This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2215

2010 Today's Calculation Of Integral, 537

Evaluate $ \int_0^{\frac{\pi}{6}} \frac{\sqrt{1\plus{}\sin x}}{\cos x}\ dx$.

2000 Brazil Team Selection Test, Problem 1

Consider a triangle $ABC$ and $I$ its incenter. The line $(AI)$ meets the circumcircle of $ABC$ in $D$. Let $E$ and $F$ be the orthogonal projections of $I$ on $(BD)$ and $(CD)$ respectively. Assume that $IE+IF=\frac{1}{2}AD$. Calculate $\angle{BAC}$. [color=red][Moderator edited: Also discussed at http://www.mathlinks.ro/Forum/viewtopic.php?t=5088 .][/color]

2004 Vietnam Team Selection Test, 2

Find all real values of $\alpha$, for which there exists one and only one function $f: \mathbb{R} \mapsto \mathbb{R}$ and satisfying the equation \[ f(x^2 + y + f(y)) = (f(x))^2 + \alpha \cdot y \] for all $x, y \in \mathbb{R}$.

1969 IMO Longlists, 56

Let $a$ and $b$ be two natural numbers that have an equal number $n$ of digits in their decimal expansions. The first $m$ digits (from left to right) of the numbers $a$ and $b$ are equal. Prove that if $m >\frac{n}{2},$ then $a^{\frac{1}{n}} -b^{\frac{1}{n}} <\frac{1}{n}$

2005 Today's Calculation Of Integral, 14

Calculate the following indefinite integrals. [1] $\int \frac{\sin x\cos x}{1+\sin ^ 2 x}dx$ [2] $\int x\log_{10} x dx$ [3] $\int \frac{x}{\sqrt{2x-1}}dx$ [4] $\int (x^2+1)\ln x dx$ [5] $\int e^x\cos x dx$

1975 AMC 12/AHSME, 22

If $ p$ and $ q$ are primes and $ x^2 \minus{} px \plus{} q \equal{} 0$ has distinct positive integral roots, then which of the following statements are true? $ \text{I. The difference of the roots is odd.}$ $ \text{II. At least one root is prime.}$ $ \text{III. } p^2 \minus{} q \text{ is prime.}$ $ \text{IV. } p \plus{} q \text{ is prime.}$ $ \textbf{(A)}\ \text{I only} \qquad \textbf{(B)}\ \text{II only} \qquad \textbf{(C)}\ \text{II and III only} \qquad$ $ \textbf{(D)}\ \text{I, II and IV only} \qquad \textbf{(E)}\ \text{All are true.}$

2012 Today's Calculation Of Integral, 797

In the $xyz$-space take four points $P(0,\ 0,\ 2),\ A(0,\ 2,\ 0),\ B(\sqrt{3},-1,\ 0),\ C(-\sqrt{3},-1,\ 0)$. Find the volume of the part satifying $x^2+y^2\geq 1$ in the tetrahedron $PABC$. 50 points

2005 Today's Calculation Of Integral, 91

Prove the following inequality. \[ \sum_{n=0}^\infty \int_0^1 x^{4011} (1-x^{2006})^\frac{n-1}{2006}\ dx<\frac{2006}{2005} \]

2006 Romania Team Selection Test, 4

Let $p$, $q$ be two integers, $q\geq p\geq 0$. Let $n \geq 2$ be an integer and $a_0=0, a_1 \geq 0, a_2, \ldots, a_{n-1},a_n = 1$ be real numbers such that \[ a_{k} \leq \frac{ a_{k-1} + a_{k+1} } 2 , \ \forall \ k=1,2,\ldots, n-1 . \] Prove that \[ (p+1) \sum_{k=1}^{n-1} a_k^p \geq (q+1) \sum_{k=1}^{n-1} a_k^q . \]

2010 Today's Calculation Of Integral, 615

For $0\leq a\leq 2$, find the minimum value of $\int_0^2 \left|\frac{1}{1+e^x}-\frac{1}{1+e^a}\right|\ dx.$ [i]2010 Kyoto Institute of Technology entrance exam/Textile e.t.c.[/i]

1999 Harvard-MIT Mathematics Tournament, 10

Let $A_n$ be the area outside a regular $n$-gon of side length $1$ but inside its circumscribed circle, let $B_n$ be the area inside the $n$-gon but outside its inscribed circle. Find the limit as $n$ tends to infinity of $\dfrac{A_n}{B_n}$.

1991 Arnold's Trivium, 20

Find the derivative of the solution of the equation $\ddot{x} =x + A\dot{x}^2$, with initial conditions $x(0) = 1$, $\dot{x}(0) = 0$, with respect to the parameter $A$ for $A = 0$.

2012 Today's Calculation Of Integral, 841

Find $\int_0^x \frac{dt}{1+t^2}+\int_0^{\frac{1}{x}} \frac{dt}{1+t^2}\ (x>0).$

2012 Canada National Olympiad, 3

Let $ABCD$ be a convex quadrilateral and let $P$ be the point of intersection of $AC$ and $BD$. Suppose that $AC+AD=BC+BD$. Prove that the internal angle bisectors of $\angle ACB$, $\angle ADB$ and $\angle APB$ meet at a common point.

1984 Putnam, B4

Find, with proof, all real-valued functions $y=g(x)$ defined and continuous on $[0,\infty)$, positive on $(0,\infty)$, such that for all $x>0$ the $y$-coordinate of the centroid of the region $$R_x=\{(s,t)\mid0\le s\le x,\enspace0\le t\le g(s)\}$$is the same as the average value of $g$ on $[0,x]$.

2007 Today's Calculation Of Integral, 253

Evaluate $ \int_0^1 (1 \plus{} x \plus{} x^2 \plus{} \cdots \plus{} x^{n \minus{} 1})\{1 \plus{} 3x \plus{} 5x^2 \plus{} \cdots \plus{} (2n \minus{} 3)x^{n \minus{} 2} \plus{} (2n \minus{} 1)x^{n \minus{} 1}\}\ dx.$

2006 IberoAmerican Olympiad For University Students, 4

Prove that for any interval $[a,b]$ of real numbers and any positive integer $n$ there exists a positive integer $k$ and a partition of the given interval \[a = x (0) < x (1) < x (2) < \cdots < x (k-1) < x (k) = b\] such that \[\int_{x(0)}^{x(1)}f(x)dx+\int_{x(2)}^{x(3)}f(x)dx+\cdots=\int_{x(1)}^{x(2)}f(x)dx+\int_{x(3)}^{x(4)}f(x)dx+\cdots\] for all polynomials $f$ with real coefficients and degree less than $n$.

1984 Putnam, A5

Putnam 1984/A5) Let $R$ be the region consisting of all triples $(x,y,z)$ of nonnegative real numbers satisfying $x+y+z\leq 1$. Let $w=1-x-y-z$. Express the value of the triple integral \[\iiint_{R}xy^{9}z^{8}w^{4}\ dx\ dy\ dz\] in the form $a!b!c!d!/n!$ where $a,b,c,d$ and $n$ are positive integers. [hide="A solution"]\[\iiint_{R}xy^{9}z^{8}w^{4}\ dx dy dz = 4\iiint_{R}\int_{0}^{1-x-y-z}xy^{9}z^{8}w^{3}\ dw dx dy dz = 4\iiiint_{Q}xy^{9}z^{8}w^{3}\ dw dx dy dz\] where $Q=\left\{ (x,y,z,w)\in\mathbb{R}^{4}|\ x,y,z,w\geq 0, x+y+z+w\leq 1\right\}$, which is a Dirichlet integral giving \[4\iiiint_{Q}x^{1}y^{9}z^{8}w^{3}\ dw dx dy dz = 4\cdot\frac{1!9!8!3!}{(2+10+9+4)!}= \frac{1!9!8!4!}{25!}\][/hide]

1985 Iran MO (2nd round), 5

Let $f: \mathbb R \to \mathbb R$ and $g: \mathbb R \to \mathbb R$ be two functions satisfying \[\forall x,y \in \mathbb R: \begin{cases} f(x+y)=f(x)f(y),\\ f(x)= x g(x)+1\end{cases} \quad \text{and} \quad \lim_{x \to 0} g(x)=1.\] Find the derivative of $f$ in an arbitrary point $x.$

Today's calculation of integrals, 861

Answer the questions as below. (1) Find the local minimum of $y=x(1-x^2)e^{x^2}.$ (2) Find the total area of the part bounded the graph of the function in (1) and the $x$-axis.

2023 Serbia National Math Olympiad, 5

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function which satisfies the following: [list][*] $f(m)=m$, for all $m\in\mathbb{Z}$;[*] $f(\frac{a+b}{c+d})=\frac{f(\frac{a}{c})+f(\frac{b}{d})}{2}$, for all $a, b, c, d\in\mathbb{Z}$ such that $|ad-bc|=1$, $c>0$ and $d>0$;[*] $f$ is monotonically increasing.[/list] (a) Prove that the function $f$ is unique. (b) Find $f(\frac{\sqrt{5}-1}{2})$.

2010 Gheorghe Vranceanu, 1

Tags: calculus
$ \lim_{n\to\infty } n\left( \sqrt[3]{n^3-6n^2+6n+1}-\sqrt{n^2-an+5} \right) $

2021 CMIMC Integration Bee, 1

$$\int_0^5 \max(2x,x^2)\,dx$$ [i]Proposed by Connor Gordon[/i]

1957 AMC 12/AHSME, 10

The graph of $ y \equal{} 2x^2 \plus{} 4x \plus{} 3$ has its: $ \textbf{(A)}\ \text{lowest point at } {(\minus{}1,9)}\qquad \textbf{(B)}\ \text{lowest point at } {(1,1)}\qquad \\ \textbf{(C)}\ \text{lowest point at } {(\minus{}1,1)}\qquad \textbf{(D)}\ \text{highest point at } {(\minus{}1,9)}\qquad \\ \textbf{(E)}\ \text{highest point at } {(\minus{}1,1)}$

2009 Today's Calculation Of Integral, 461

Let $ I_n\equal{}\int_0^{\sqrt{3}} \frac{1}{1\plus{}x^{n}}\ dx\ (n\equal{}1,\ 2,\ \cdots)$. (1) Find $ I_1,\ I_2$. (2) Find $ \lim_{n\to\infty} I_n$.