This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2215

1987 Traian Lălescu, 2.2

Let $ f:[0,1]\longrightarrow\mathbb{R} $ a continuous function. Prove that $$ \int_0^1 f^2\left( x^2 \right) dx\ge \frac{3}{4}\left( \int_0^1 f(x)dx \right)^2 , $$ and find the circumstances under which equality happens.

2003 All-Russian Olympiad, 1

Let $\alpha , \beta , \gamma , \delta$ be positive numbers such that for all $x$, $\sin{\alpha x}+\sin {\beta x}=\sin {\gamma x}+\sin {\delta x}$. Prove that $\alpha =\gamma$ or $\alpha=\delta$.

2004 Romania National Olympiad, 3

Let $n>2,n \in \mathbb{N}$ and $a>0,a \in \mathbb{R}$ such that $2^a + \log_2 a = n^2$. Prove that: \[ 2 \cdot \log_2 n>a>2 \cdot \log_2 n -\frac{1}{n} . \] [i]Radu Gologan[/i]

2013 ELMO Shortlist, 5

Let $a,b,c$ be positive reals satisfying $a+b+c = \sqrt[7]{a} + \sqrt[7]{b} + \sqrt[7]{c}$. Prove that $a^a b^b c^c \ge 1$. [i]Proposed by Evan Chen[/i]

2011 Today's Calculation Of Integral, 757

Evaluate \[\int_0^1 \frac{(x^2+x+1)^3\{\ln (x^2+x+1)+2\}}{(x^2+x+1)^3}(2x+1)e^{x^2+x+1}dx.\]

1990 India National Olympiad, 2

Determine all non-negative integral pairs $ (x, y)$ for which \[ (xy \minus{} 7)^2 \equal{} x^2 \plus{} y^2.\]

2005 Romania Team Selection Test, 3

Let $P$ be a polygon (not necessarily convex) with $n$ vertices, such that all its sides and diagonals are less or equal with 1 in length. Prove that the area of the polygon is less than $\dfrac {\sqrt 3} 2$.

2008 Romania National Olympiad, 2

Let $ f: [0,1]\to\mathbb R$ be a derivable function, with a continuous derivative $ f'$ on $ [0,1]$. Prove that if $ f\left( \frac 12\right) \equal{} 0$, then \[ \int^1_0 \left( f'(x) \right)^2 dx \geq 12 \left( \int^1_0 f(x) dx \right)^2.\]

1959 Putnam, A7

If $f$ is a real-valued function of one real variable which has a continuous derivative on the closed interval $[a,b]$ and for which there is no $x\in [a,b]$ such that $f(x)=f'(x)=0$, then prove that there is a function $g$ with continuous first derivative on $[a,b]$ such that $fg'-f'g$ is positive on $[a,b].$

2011 Bogdan Stan, 4

Let be an open interval $ I $ and a convex function $ f:I\longrightarrow\mathbb{R} . $ Prove that the lateral derivatives of $ f $ are left-continuous on $ \mathbb{R} $ and also right-continuous on $ \mathbb{R} . $ [i]Marin Tolosi[/i]

2007 Today's Calculation Of Integral, 195

Find continuous functions $x(t),\ y(t)$ such that $\ \ \ \ \ \ \ \ \ x(t)=1+\int_{0}^{t}e^{-2(t-s)}x(s)ds$ $\ \ \ \ \ \ \ \ \ y(t)=\int_{0}^{t}e^{-2(t-s)}\{2x(s)+3y(s)\}ds$

1997 AMC 12/AHSME, 13

How many two-digit positive integers $ N$ have the property that the sum of $ N$ and the number obtained by reversing the order of the digits of $ N$ is a perfect square? $ \textbf{(A)}\ 4\qquad \textbf{(B)}\ 5\qquad \textbf{(C)}\ 6\qquad \textbf{(D)}\ 7\qquad \textbf{(E)}\ 8$

2013 Today's Calculation Of Integral, 885

Find the infinite integrals as follows. (1) 2013 Hiroshima City University entrance exam/Informatic Science $\int \frac{x^2}{2-x^2}dx$ (2) 2013 Kanseigakuin University entrance exam/Science and Technology $\int x^4\ln x\ dx$ (3) 2013 Shinsyu University entrance exam/Textile Science and Technology, Second-exam $\int \frac{\cos ^ 3 x}{\sin ^ 2 x}\ dx$

1970 IMO, 3

The real numbers $a_0,a_1,a_2,\ldots$ satisfy $1=a_0\le a_1\le a_2\le\ldots. b_1,b_2,b_3,\ldots$ are defined by $b_n=\sum_{k=1}^n{1-{a_{k-1}\over a_k}\over\sqrt a_k}$. [b]a.)[/b] Prove that $0\le b_n<2$. [b]b.)[/b] Given $c$ satisfying $0\le c<2$, prove that we can find $a_n$ so that $b_n>c$ for all sufficiently large $n$.

Today's calculation of integrals, 877

Let $f(x)=\lim_{n\to\infty} \frac{\sin^{n+2}x+\cos^{n+2}x}{\sin^n x+\cos^n x}$ for $0\leq x\leq \frac{\pi}2.$ Evaluate $\int_0^{\frac{\pi}2} f(x)\ dx.$

2006 Harvard-MIT Mathematics Tournament, 8

Compute $\displaystyle\int_0^{\pi/3}x\tan^2(x)dx$.

2006 South africa National Olympiad, 2

Triangle $ABC$ has $BC=1$ and $AC=2$. What is the maximum possible value of $\hat{A}$.

2012 AMC 10, 25

Real numbers $x,y$, and $z$ are chosen independently and at random from the interval $[0,n]$ for some positive integer $n$. The probability that no two of $x,y$, and $z$ are within $1$ unit of each other is greater than $\tfrac{1}{2}$. What is the smallest possible value of $n$? $ \textbf{(A)}\ 7 \qquad\textbf{(B)}\ 8 \qquad\textbf{(C)}\ 9 \qquad\textbf{(D)}\ 10 \qquad\textbf{(E)}\ 11 $

2011 Today's Calculation Of Integral, 755

Given mobile points $P(0,\ \sin \theta),\ Q(8\cos \theta,\ 0)\ \left(0\leq \theta \leq \frac{\pi}{2}\right)$ on the $x$-$y$ plane. Denote by $D$ the part in which line segment $PQ$ sweeps. Find the volume $V$ generated by a rotation of $D$ around the $x$-axis.

2010 Laurențiu Panaitopol, Tulcea, 3

Let be a twice-differentiable function $ f:\mathbb{R}\longrightarrow\mathbb{R} $ that has the properties that: $ \text{(i) supp} f''=f\left(\mathbb{R}\right) $ $ \text{(ii)}\exists g:\mathbb{R}\longrightarrow\mathbb{R}\quad\forall x\in\mathbb{R}\quad f(x+1)=f(x)+f'\left( g(x)\right)\text{ and } f'(x+1)=f'(x)+f''\left( g(x)\right) $ Prove that: [b]a)[/b] any such $ g $ is injective. [b]b)[/b] $ f $ is of class $ C^{\infty } , $ and for any natural number $ n, $ any real number $ x $ and any such $ g, $ $$f^{(n)}(x+1)=f^{(n)}(x)+f^{(n+1)}\left( g(x)\right) . $$ [i]Laurențiu Panaitopol[/i]

2011 China Team Selection Test, 2

Let $n$ be a positive integer and let $\alpha_n $ be the number of $1$'s within binary representation of $n$. Show that for all positive integers $r$, \[2^{2n-\alpha_n}\phantom{-1} \bigg|^{\phantom{0}}_{\phantom{-1}} \sum_{k=-n}^{n} \binom{2n}{n+k} k^{2r}.\]

1998 IMC, 4

The function $f: \mathbb{R}\rightarrow\mathbb{R}$ is twice differentiable and satisfies $f(0)=2,f'(0)=-2,f(1)=1$. Prove that there is a $\xi \in ]0,1[$ for which we have $f(\xi)\cdot f'(\xi)+f''(\xi)=0$.

2007 Today's Calculation Of Integral, 184

(1) For real numbers $x,\ a$ such that $0<x<a,$ prove the following inequality. \[\frac{2x}{a}<\int_{a-x}^{a+x}\frac{1}{t}\ dt<x\left(\frac{1}{a+x}+\frac{1}{a-x}\right). \] (2) Use the result of $(1)$ to prove that $0.68<\ln 2<0.71.$

1994 Vietnam Team Selection Test, 3

Calculate \[T = \sum \frac{1}{n_1! \cdot n_2! \cdot \cdots n_{1994}! \cdot (n_2 + 2 \cdot n_3 + 3 \cdot n_4 + \ldots + 1993 \cdot n_{1994})!}\] where the sum is taken over all 1994-tuples of the numbers $n_1, n_2, \ldots, n_{1994} \in \mathbb{N} \cup \{0\}$ satisfying $n_1 + 2 \cdot n_2 + 3 \cdot n_3 + \ldots + 1994 \cdot n_{1994} = 1994.$

2011 Today's Calculation Of Integral, 684

On the $xy$ plane, find the area of the figure bounded by the graphs of $y=x$ and $y=\left|\ \frac34 x^2-3\ \right |-2$. [i]2011 Kyoto University entrance exam/Science, Problem 3[/i]