This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2215

2007 Moldova National Olympiad, 12.8

Find all continuous functions $f\colon [0;1] \to R$ such that \[\int_{0}^{1}f(x)dx = 2\int_{0}^{1}(f(x^{4}))^{2}dx+\frac{2}{7}\]

Today's calculation of integrals, 870

Consider the ellipse $E: 3x^2+y^2=3$ and the hyperbola $H: xy=\frac 34.$ (1) Find all points of intersection of $E$ and $H$. (2) Find the area of the region expressed by the system of inequality \[\left\{ \begin{array}{ll} 3x^2+y^2\leq 3 &\quad \\ xy\geq \frac 34 , &\quad \end{array} \right.\]

1990 National High School Mathematics League, 10

Define $f(n):$ the number of integral points of line segment $OA_n$ ($O$ and $A_n$ not included), where $A_n(n,n+3)$. Then, $f(1)+f(2)+\cdots+f(1990)=$________.

2007 Today's Calculation Of Integral, 194

Evaluate \[\sum_{n=0}^{2006}\int_{0}^{1}\frac{dx}{2(x+n+1)\sqrt{(x+n)(x+n+1)}}\]

1979 IMO Longlists, 60

Given the integer $n > 1$ and the real number $a > 0$ determine the maximum of $\sum_{i=1}^{n-1} x_i x_{i+1}$ taken over all nonnegative numbers $x_i$ with sum $a.$

Today's calculation of integrals, 876

Suppose a function $f(x)$ is continuous on $[-1,\ 1]$ and satisfies the condition : 1) $f(-1)\geq f(1).$ 2) $x+f(x)$ is non decreasing function. 3) $\int_{-1}^ 1 f(x)\ dx=0.$ Show that $\int_{-1}^1 f(x)^2dx\leq \frac 23.$

2007 Today's Calculation Of Integral, 240

2 curves $ y \equal{} x^3 \minus{} x$ and $ y \equal{} x^2 \minus{} a$ pass through the point $ P$ and have a common tangent line at $ P$. Find the area of the region bounded by these curves.

2009 Today's Calculation Of Integral, 499

Evaluate \[ \int_0^{\pi} (\sqrt[2009]{\cos x}\plus{}\sqrt[2009]{\sin x}\plus{}\sqrt[2009]{\tan x})\ dx.\]

2000 CentroAmerican, 1

Find all three-digit numbers $ abc$ (with $ a \neq 0$) such that $ a^{2}+b^{2}+c^{2}$ is a divisor of 26.

2007 Today's Calculation Of Integral, 249

Determine the sign of $ \int_{\frac{1}{2}}^2 \frac{\ln t}{1\plus{}t^n}\ dt\ (n\equal{}1, 2, \cdots)$.

2002 District Olympiad, 3

[b]a)[/b] Calculate $ \lim_{n\to\infty} \int_0^{\alpha } \ln \left( 1+x+x^2+\cdots +x^{n-1} \right) dx , $ for all $ \alpha\in (0,1) . $ [b]b)[/b] Calculate $ \lim_{n\to\infty} \int_0^{1 } \ln \left( 1+x+x^2+\cdots +x^{n-1} \right) dx . $

2012 Putnam, 5

Prove that, for any two bounded functions $g_1,g_2 : \mathbb{R}\to[1,\infty),$ there exist functions $h_1,h_2 : \mathbb{R}\to\mathbb{R}$ such that for every $x\in\mathbb{R},$\[\sup_{s\in\mathbb{R}}\left(g_1(s)^xg_2(s)\right)=\max_{t\in\mathbb{R}}\left(xh_1(t)+h_2(t)\right).\]

2010 Today's Calculation Of Integral, 549

Let $ f(x)$ be a function defined on $ [0,\ 1]$. For $ n=1,\ 2,\ 3,\ \cdots$, a polynomial $ P_n(x)$ is defined by $ P_n(x)=\sum_{k=0}^n {}_nC{}_k f\left(\frac{k}{n}\right)x^k(1-x)^{n-k}$. Prove that $ \lim_{n\to\infty} \int_0^1 P_n(x)dx=\int_0^1 f(x)dx$.

2005 Today's Calculation Of Integral, 68

Find the minimum value of $\int_1^e \left|\ln x-\frac{a}{x}\right|dx\ (0\leq a\leq e)$

2017 BMT Spring, 3

Compute $\int^9_{-9}17x^3 \cos (x^2) dx.$

2024 ISI Entrance UGB, P4

Tags: function , calculus , limit
Let $f: \mathbb R \to \mathbb R$ be a function which is differentiable at $0$. Define another function $g: \mathbb R \to \mathbb R$ as follows: $$g(x) = \begin{cases} f(x)\sin\left(\frac 1x\right) ~ &\text{if} ~ x \neq 0 \\ 0 &\text{if} ~ x = 0. \end{cases}$$ Suppose that $g$ is also differentiable at $0$. Prove that \[g'(0) = f'(0) = f(0) = g(0) = 0.\]

2014 AIME Problems, 7

Let $w$ and $z$ be complex numbers such that $|w| = 1$ and $|z| = 10$. Let $\theta = \arg\left(\tfrac{w-z}{z}\right)$. The maximum possible value of $\tan^2 \theta$ can be written as $\tfrac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$. (Note that $\arg(w)$, for $w \neq 0$, denotes the measure of the angle that the ray from $0$ to $w$ makes with the positive real axis in the complex plane.

2010 Morocco TST, 2

Find the integer represented by $\left[ \sum_{n=1}^{10^9} n^{-2/3} \right] $. Here $[x]$ denotes the greatest integer less than or equal to $x.$

1994 IMC, 3

Let $f$ be a real-valued function with $n+1$ derivatives at each point of $\mathbb R$. Show that for each pair of real numbers $a$, $b$, $a<b$, such that $$\ln\left( \frac{f(b)+f'(b)+\cdots + f^{(n)} (b)}{f(a)+f'(a)+\cdots + f^{(n)}(a)}\right)=b-a$$ there is a number $c$ in the open interval $(a,b)$ for which $$f^{(n+1)}(c)=f(c)$$

2009 Today's Calculation Of Integral, 423

Let $ f(x)\equal{}x^2\plus{}3$ and $ y\equal{}g(x)$ be the equation of the line with the slope $ a$, which pass through the point $ (0,\ f(0))$ . Find the maximum and minimum values of $ I(a)\equal{}3\int_{\minus{}1}^1 |f(x)\minus{}g(x)|\ dx$.

2009 Harvard-MIT Mathematics Tournament, 8

Compute \[\int_1^{\sqrt{3}} x^{2x^2+1}+\ln\left(x^{2x^{2x^2+1}}\right)dx.\]

2004 Harvard-MIT Mathematics Tournament, 2

Suppose the function $f(x)-f(2x)$ has derivative $5$ at $x=1$ and derivative $7$ at $x=2$. Find the derivative of $f(x)-f(4x)$ at $x=1$.

2023 CMIMC Integration Bee, 10

\[\int_{\frac 1{\sqrt 3}}^{\sqrt 3} \frac{\arctan(x)\log^2(x)}{x}\,\mathrm dx\] [i]Proposed by Connor Gordon[/i]

1977 USAMO, 5

If $ a,b,c,d,e$ are positive numbers bounded by $ p$ and $ q$, i.e, if they lie in $ [p,q], 0 < p$, prove that \[ (a \plus{} b \plus{} c \plus{} d \plus{} e)\left(\frac {1}{a} \plus{} \frac {1}{b} \plus{} \frac {1}{c} \plus{} \frac {1}{d} \plus{} \frac {1}{e}\right) \le 25 \plus{} 6\left(\sqrt {\frac {p}{q}} \minus{} \sqrt {\frac {q}{p}}\right)^2\] and determine when there is equality.

2009 Today's Calculation Of Integral, 509

Evaluate $ \int_0^{\frac{\pi}{4}} \frac{\tan x}{1\plus{}\sin x}\ dx$.