Found problems: 2215
2009 Today's Calculation Of Integral, 488
For $ 0\leq x <\frac{\pi}{2}$, prove the following inequality.
$ x\plus{}\ln (\cos x)\plus{}\int_0^1 \frac{t}{1\plus{}t^2}\ dt\leq \frac{\pi}{4}$
2009 Today's Calculation Of Integral, 500
Let $ a,\ b,\ c$ be positive real numbers. Prove the following inequality.
\[ \int_1^e \frac {x^{a \plus{} b \plus{} c \minus{} 1}[2(a \plus{} b \plus{} c) \plus{} (c \plus{} 2a)x^{a \minus{} b} \plus{} (a \plus{} 2b)x^{b \minus{} c} \plus{} (b \plus{} 2c)x^{c \minus{} a} \plus{}(2a \plus{} b)x^{a \minus{} c} \plus{} (2b \plus{} c)x^{b \minus{} a} \plus{} (2c \plus{} a)x^{c \minus{} b}]}{(x^a \plus{} x^b)(x^b \plus{} x^c)(x^c \plus{} x^a)}\geq a \plus{} b \plus{} c.\]
I have just posted 500 th post.
[color=blue]Thank you for your cooperations, mathLinkers and AOPS users.[/color]
I will keep posting afterwards.
Japanese Communities Modeartor
kunny
2014 All-Russian Olympiad, 3
If the polynomials $f(x)$ and $g(x)$ are written on a blackboard then we can also write down the polynomials $f(x)\pm g(x)$, $f(x)g(x)$, $f(g(x))$ and $cf(x)$, where $c$ is an arbitrary real constant. The polynomials $x^3-3x^2+5$ and $x^2-4x$ are written on the blackboard. Can we write a nonzero polynomial of form $x^n-1$ after a finite number of steps?
2010 Today's Calculation Of Integral, 527
Let $ n,\ m$ be positive integers and $ \alpha ,\ \beta$ be real numbers.
Prove the following equations.
(1) $ \int_{\alpha}^{\beta} (x \minus{} \alpha)(x \minus{} \beta)\ dx \equal{} \minus{} \frac 16 (\beta \minus{} \alpha)^3$
(2) $ \int_{\alpha}^{\beta} (x \minus{} \alpha)^n(x \minus{} \beta)\ dx \equal{} \minus{} \frac {n!}{(n \plus{} 2)!}(\beta \minus{} \alpha)^{n \plus{} 2}$
(3) $ \int_{\alpha}^{\beta} (x \minus{} \alpha)^n(x \minus{} \beta)^mdx \equal{} ( \minus{} 1)^{m}\frac {n!m!}{(n \plus{} m \plus{} 1)!}(\beta \minus{} \alpha)^{n \plus{} m \plus{} 1}$
2005 Today's Calculation Of Integral, 18
Calculate the following indefinite integrals.
[1] $\int (\sin x+\cos x)^4 dx$
[2] $\int \frac{e^{2x}}{e^x+1}dx$
[3] $\int \sin ^ 4 xdx$
[4] $\int \sin 6x\cos 2xdx$
[5] $\int \frac{x^2}{\sqrt{(x+1)^3}}dx$
1998 Harvard-MIT Mathematics Tournament, 6
Edward, the author of this test, had to escape from prison to work in the grading room today. He stopped to rest at a place $1,875$ feet from the prison and was spotted by a guard with a crossbow.
The guard fired an arrow with an initial velocity of $100 \dfrac{\text{ft}}{\text{s}}$. At the same time, Edward started running away with an acceleration of $1 \dfrac{\text{ft}}{\text{s}^2}$. Assuming that air resistance causes the arrow to decelerate at $1 \dfrac{\text{ft}}{\text{s}^2}$, and that it does hit Edward, how fast was the arrow moving at the moment of impact (in $\dfrac{\text{ft}}{\text{s}}$)?
2011 Today's Calculation Of Integral, 685
Suppose that a cubic function with respect to $x$, $f(x)=ax^3+bx^2+cx+d$ satisfies all of 3 conditions:
\[f(1)=1,\ f(-1)=-1,\ \int_{-1}^1 (bx^2+cx+d)\ dx=1\].
Find $f(x)$ for which $I=\int_{-1}^{\frac 12} \{f''(x)\}^2\ dx$ is minimized, the find the minimum value.
[i]2011 Tokyo University entrance exam/Humanities, Problem 1[/i]
1940 Putnam, A1
Prove that if $f(x)$ is a polynomial with integer coefficients and there exists an integer $k$ such that none of $f(1),\ldots,f(k)$ is divisible by $k$, then $f(x)$ has no integral root.
2010 Today's Calculation Of Integral, 644
For a constant $p$ such that $\int_1^p e^xdx=1$, prove that
\[\left(\int_1^p e^x\cos x\ dx\right)^2+\left(\int_1^p e^x\sin x\ dx\right)^2>\frac 12.\]
Own
2012 Online Math Open Problems, 25
Suppose 2012 reals are selected independently and at random from the unit interval $[0,1]$, and then written in nondecreasing order as $x_1\le x_2\le\cdots\le x_{2012}$. If the probability that $x_{i+1} - x_i \le \frac{1}{2011}$ for $i=1,2,\ldots,2011$ can be expressed in the form $\frac{m}{n}$ for relatively prime positive integers $m,n$, find the remainder when $m+n$ is divided by 1000.
[i]Victor Wang.[/i]
2011 Today's Calculation Of Integral, 753
Find $\lim_{n\to\infty} \sum_{k=1}^{2n} \frac{n}{2n^2+3nk+k^2}.$
2022 CMIMC Integration Bee, 11
\[\int_0^{\pi/2} \frac{\sin(x)}{2-\sin(x)\cos(x)}\,\mathrm dx\]
[i]Proposed by Connor Gordon[/i]
2010 Today's Calculation Of Integral, 547
Find the minimum value of $ \int_0^1 |e^{ \minus{} x} \minus{} a|dx\ ( \minus{} \infty < a < \infty)$.
MathLinks Contest 7th, 1.2
Let $ a,b,c,d$ be four distinct positive integers in arithmetic progression. Prove that $ abcd$ is not a perfect square.
2011 Today's Calculation Of Integral, 676
Let $f(x)=\cos ^ 4 x+3\sin ^ 4 x$.
Evaluate $\int_0^{\frac{\pi}{2}} |f'(x)|dx$.
[i]2011 Tokyo University of Science entrance exam/Management[/i]
2019 CMI B.Sc. Entrance Exam, 6
$(a)$ Compute -
\begin{align*}
\frac{\mathrm{d}}{\mathrm{d}x} \bigg[ \int_{0}^{e^x} \log ( t ) \cos^4 ( t ) \mathrm{d}t \bigg]
\end{align*}
$(b)$ For $x > 0 $ define $F ( x ) = \int_{1}^{x} t \log ( t ) \mathrm{d}t . $\\
\\$1.$ Determine the open interval(s) (if any) where $F ( x )$ is decreasing and all the open interval(s) (if any) where $F ( x )$ is increasing.\\
\\$2.$ Determine all the local minima of $F ( x )$ (if any) and all the local maxima of $F ( x )$ (if any) $.$
2007 F = Ma, 11
A uniform disk, a thin hoop, and a uniform sphere, all with the same mass and same outer radius, are each free to rotate about a fixed axis through its center. Assume the hoop is connected to the rotation axis by light spokes. With the objects starting from rest, identical forces are simultaneously applied to the rims, as shown. Rank the objects according to their kinetic energies after a given time $t$, from least to greatest.
[asy]
size(225);
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps);
filldraw(circle((0,0),1),gray(.7));
draw((0,-1)--(2,-1),EndArrow);
label("$\vec{F}$",(1, -1),S);
label("Disk",(-1,0),W);
filldraw(circle((5,0),1),gray(.7));
filldraw(circle((5,0),0.75),white);
draw((5,-1)--(7,-1),EndArrow);
label("$\vec{F}$",(6, -1),S);
label("Hoop",(6,0),E);
filldraw(circle((10,0),1),gray(.5));
draw((10,-1)--(12,-1),EndArrow);
label("$\vec{F}$",(11, -1),S);
label("Sphere",(11,0),E);
[/asy]
$ \textbf{(A)} \ \text{disk, hoop, sphere}$
$\textbf{(B)}\ \text{sphere, disk, hoop}$
$\textbf{(C)}\ \text{hoop, sphere, disk}$
$\textbf{(D)}\ \text{disk, sphere, hoop}$
$\textbf{(E)}\ \text{hoop, disk, sphere} $
2019 Jozsef Wildt International Math Competition, W. 66
If $0 < a \leq b$ then$$\frac{2}{\sqrt{3}}\tan^{-1}\left(\frac{2(b^2 - a^2)}{(a^2+2)(b^2+2)}\right)\leq \int \limits_a^b \frac{(x^2+1)(x^2+x+1)}{(x^3 + x^2 + 1) (x^3 + x + 1)}dx\leq \frac{4}{\sqrt{3}}\tan^{-1}\left(\frac{(b-a)\sqrt{3}}{a+b+2(1+ab)}\right)$$
Today's calculation of integrals, 850
Evaluate
\[\int_0^{\pi} \{(1-x\sin 2x)e^{\cos ^2 x}+(1+x\sin 2x)e^{\sin ^ 2 x}\}\ dx.\]
2007 Today's Calculation Of Integral, 240
2 curves $ y \equal{} x^3 \minus{} x$ and $ y \equal{} x^2 \minus{} a$ pass through the point $ P$ and have a common tangent line at $ P$. Find the area of the region bounded by these curves.
2010 Today's Calculation Of Integral, 577
Prove the following inequality for any integer $ N\geq 4$.
\[ \sum_{p\equal{}4}^N \frac{p^2\plus{}2}{(p\minus{}2)^4}<5\]
Today's calculation of integrals, 857
Let $f(x)=\lim_{n\to\infty} (\cos ^ n x+\sin ^ n x)^{\frac{1}{n}}$ for $0\leq x\leq \frac{\pi}{2}.$
(1) Find $f(x).$
(2) Find the volume of the solid generated by a rotation of the figure bounded by the curve $y=f(x)$ and the line $y=1$ around the $y$-axis.
2010 Today's Calculation Of Integral, 594
In the $x$-$y$ plane, two variable points $P,\ Q$ stay in $P(2t,\ -2t^2+2t),\ Q(t+2,-3t+2)$ at the time $t$.
Let denote $t_0$ as the time such that $\overline{PQ}=0$. When $t$ varies in the range of $0\leq t\leq t_0$, find the area of the region swept by the line segment $PQ$ in the $x$-$y$ plane.
1992 Brazil National Olympiad, 1
The equation $x^3+px+q=0$ has three distinct real roots. Show that $p<0$
2010 AMC 12/AHSME, 18
A frog makes $ 3$ jumps, each exactly $ 1$ meter long. The directions of the jumps are chosen independently and at random. What is the probability the frog's final position is no more than $ 1$ meter from its starting position?
$ \textbf{(A)}\ \frac {1}{6} \qquad \textbf{(B)}\ \frac {1}{5} \qquad \textbf{(C)}\ \frac {1}{4} \qquad \textbf{(D)}\ \frac {1}{3} \qquad \textbf{(E)}\ \frac {1}{2}$