This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 713

2009 Today's Calculation Of Integral, 466

For $ n \equal{} 1,\ 2,\ 3,\ \cdots$, let $ (p_n,\ q_n)\ (p_n > 0,\ q_n > 0)$ be the point of intersection of $ y \equal{} \ln (nx)$ and $ \left(x \minus{} \frac {1}{n}\right)^2 \plus{} y^2 \equal{} 1$. (1) Show that $ 1 \minus{} q_n^2\leq \frac {(e \minus{} 1)^2}{n^2}$ to find $ \lim_{n\to\infty} q_n$. (2) Find $ \lim_{n\to\infty} n\int_{\frac {1}{n}}^{p_n} \ln (nx)\ dx$.

2012 Today's Calculation Of Integral, 815

Prove that : $\left|\sum_{i=0}^n \left(1-\pi \sin \frac{i\pi}{4n}\cos \frac{i\pi}{4n}\right)\right|<1.$

2005 Today's Calculation Of Integral, 66

Find the minimum value of $\int_0^{\frac{\pi}{2}} |\cos x -a|\sin x \ dx$

2017 ISI Entrance Examination, 3

Suppose $f:\mathbb{R} \to \mathbb{R}$ is a function given by $$f(x) =\begin{cases} 1 & \mbox{if} \ x=1 \\ e^{(x^{10}-1)}+(x-1)^2\sin\frac1{x-1} & \mbox{if} \ x\neq 1\end{cases}$$ (a) Find $f'(1)$ (b) Evaluate $\displaystyle \lim_{u\to\infty} \left[100u-u\sum_{k=1}^{100} f\left(1+\frac{k}{u}\right)\right]$.

2012 Today's Calculation Of Integral, 843

Let $f(x)$ be a continuous function such that $\int_0^1 f(x)\ dx=1.$ Find $f(x)$ for which $\int_0^1 (x^2+x+1)f(x)^2dx$ is minimized.

2010 Today's Calculation Of Integral, 612

For $f(x)=\frac{1}{x}\ (x>0)$, prove the following inequality. \[f\left(t+\frac 12 \right)\leq \int_t^{t+1} f(x)\ dx\leq \frac 16\left\{f(t)+4f\left(t+\frac 12\right)+f(t+1)\right\}\]

2013 Today's Calculation Of Integral, 879

Evaluate the integrals as follows. (1) $\int \frac{x^2}{2-x}\ dx$ (2) $\int \sqrt[3]{x^5+x^3}\ dx$ (3) $\int_0^1 (1-x)\cos \pi x\ dx$

2009 Today's Calculation Of Integral, 478

Evaluate $ \int_0^{\frac{\pi}{4}} \{(x\sqrt{\sin x}\plus{}2\sqrt{\cos x})\sqrt{\tan x}\plus{}(x\sqrt{\cos x}\minus{}2\sqrt{\sin x})\sqrt{\cot x}\}\ dx.$

2012 Today's Calculation Of Integral, 829

Let $a$ be a positive constant. Find the value of $\ln a$ such that \[\frac{\int_1^e \ln (ax)\ dx}{\int_1^e x\ dx}=\int_1^e \frac{\ln (ax)}{x}\ dx.\]

2009 Today's Calculation Of Integral, 483

Let $ n\geq 2$ be natural number. Answer the following questions. (1) Evaluate the definite integral $ \int_1^n x\ln x\ dx.$ (2) Prove the following inequality. $ \frac 12n^2\ln n \minus{} \frac 14(n^2 \minus{} 1) < \sum_{k \equal{} 1}^n k\ln k < \frac 12n^2\ln n \minus{} \frac 14 (n^2 \minus{} 1) \plus{} n\ln n.$ (3) Find $ \lim_{n\to\infty} (1^1\cdot 2^2\cdot 3^3\cdots\cdots n^n)^{\frac {1}{n^2 \ln n}}.$

2007 Today's Calculation Of Integral, 234

For $ x\geq 0,$ define a function $ f(x)\equal{}\sin \left(\frac{n\pi}{4}\right)\sin x\ (n\pi \leq x<(n\plus{}1)\pi )\ (n\equal{}0,\ 1,\ 2,\ \cdots)$. Evaluate $ \int_0^{100\pi } f(x)\ dx.$

2012 Today's Calculation Of Integral, 822

For $n=0,\ 1,\ 2,\ \cdots$, let $a_n=\int_{n}^{n+1} \{xe^{-x}-(n+1)e^{-n-1}(x-n)\}\ dx,$ $b_n=\int_{n}^{n+1} \{xe^{-x}-(n+1)e^{-n-1}\}\ dx.$ Find $\lim_{n\to\infty} \sum_{k=0}^n (a_k-b_k).$

2009 Today's Calculation Of Integral, 490

For a positive real number $ a > 1$, prove the following inequality. $ \frac {1}{a \minus{} 1}\left(1 \minus{} \frac {\ln a}{a\minus{}1}\right) < \int_0^1 \frac {x}{a^x}\ dx < \frac {1}{\ln a}\left\{1 \minus{} \frac {\ln (\ln a \plus{} 1)}{\ln a}\right\}$

2010 Today's Calculation Of Integral, 643

Evaluate \[\int_0^{\pi} \frac{x}{\sqrt{1+\sin ^ 3 x}}\{(3\pi \cos x+4\sin x)\sin ^ 2 x+4\}dx.\] Own

2012 Graduate School Of Mathematical Sciences, The Master Course, Kyoto University, 3

Show that there exists the maximum value of the function $f(x,\ y)=(3xy+1)e^{-(x^2+y^2)}$ on $\mathbb{R}^2$, then find the value.

2005 Today's Calculation Of Integral, 69

Let $f_1(x)=x,f_n(x)=x+\frac{1}{14}\int_0^\pi xf_{n-1}(t)\cos ^ 3 t\ dt\ (n\geq 2)$. Find $\lim_{n\to\infty} f_n(x)$

2012 Today's Calculation Of Integral, 804

For $a>0$, find the minimum value of $I(a)=\int_1^e |\ln ax|\ dx.$

Today's calculation of integrals, 895

In the coordinate plane, suppose that the parabola $C: y=-\frac{p}{2}x^2+q\ (p>0,\ q>0)$ touches the circle with radius 1 centered on the origin at distinct two points. Find the minimum area of the figure enclosed by the part of $y\geq 0$ of $C$ and the $x$-axis.

2007 Today's Calculation Of Integral, 188

Find the volume of the solid obtained by revolving the region bounded by the graphs of $y=xe^{1-x}$ and $y=x$ around the $x$ axis.

2011 Today's Calculation Of Integral, 767

For $0\leq t\leq 1$, define $f(t)=\int_0^{2\pi} |\sin x-t|dx.$ Evaluate $\int_0^1 f(t)dt.$

2009 Today's Calculation Of Integral, 488

For $ 0\leq x <\frac{\pi}{2}$, prove the following inequality. $ x\plus{}\ln (\cos x)\plus{}\int_0^1 \frac{t}{1\plus{}t^2}\ dt\leq \frac{\pi}{4}$

2009 Today's Calculation Of Integral, 500

Let $ a,\ b,\ c$ be positive real numbers. Prove the following inequality. \[ \int_1^e \frac {x^{a \plus{} b \plus{} c \minus{} 1}[2(a \plus{} b \plus{} c) \plus{} (c \plus{} 2a)x^{a \minus{} b} \plus{} (a \plus{} 2b)x^{b \minus{} c} \plus{} (b \plus{} 2c)x^{c \minus{} a} \plus{}(2a \plus{} b)x^{a \minus{} c} \plus{} (2b \plus{} c)x^{b \minus{} a} \plus{} (2c \plus{} a)x^{c \minus{} b}]}{(x^a \plus{} x^b)(x^b \plus{} x^c)(x^c \plus{} x^a)}\geq a \plus{} b \plus{} c.\] I have just posted 500 th post. [color=blue]Thank you for your cooperations, mathLinkers and AOPS users.[/color] I will keep posting afterwards. Japanese Communities Modeartor kunny

2010 Today's Calculation Of Integral, 527

Let $ n,\ m$ be positive integers and $ \alpha ,\ \beta$ be real numbers. Prove the following equations. (1) $ \int_{\alpha}^{\beta} (x \minus{} \alpha)(x \minus{} \beta)\ dx \equal{} \minus{} \frac 16 (\beta \minus{} \alpha)^3$ (2) $ \int_{\alpha}^{\beta} (x \minus{} \alpha)^n(x \minus{} \beta)\ dx \equal{} \minus{} \frac {n!}{(n \plus{} 2)!}(\beta \minus{} \alpha)^{n \plus{} 2}$ (3) $ \int_{\alpha}^{\beta} (x \minus{} \alpha)^n(x \minus{} \beta)^mdx \equal{} ( \minus{} 1)^{m}\frac {n!m!}{(n \plus{} m \plus{} 1)!}(\beta \minus{} \alpha)^{n \plus{} m \plus{} 1}$

2005 Today's Calculation Of Integral, 18

Calculate the following indefinite integrals. [1] $\int (\sin x+\cos x)^4 dx$ [2] $\int \frac{e^{2x}}{e^x+1}dx$ [3] $\int \sin ^ 4 xdx$ [4] $\int \sin 6x\cos 2xdx$ [5] $\int \frac{x^2}{\sqrt{(x+1)^3}}dx$

2011 Today's Calculation Of Integral, 685

Suppose that a cubic function with respect to $x$, $f(x)=ax^3+bx^2+cx+d$ satisfies all of 3 conditions: \[f(1)=1,\ f(-1)=-1,\ \int_{-1}^1 (bx^2+cx+d)\ dx=1\]. Find $f(x)$ for which $I=\int_{-1}^{\frac 12} \{f''(x)\}^2\ dx$ is minimized, the find the minimum value. [i]2011 Tokyo University entrance exam/Humanities, Problem 1[/i]