This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 247

2016 Romanian Master of Mathematics Shortlist, A2

Let $p > 3$ be a prime number, and let $F_p$ denote the (fi nite) set of residue classes modulo $p$. Let $S_d$ denote the set of $2$-variable polynomials $P(x, y)$ with coefficients in $F_p$, total degree $\le d$, and satisfying $P(x, y) = P(y,- x -y)$. Show that $$|S_d| = p^{\lceil (d+1)(d+2)/6 \rceil}$$. [i]The total degree of a $2$-variable polynomial $P(x, y)$ is the largest value of $i + j$ among monomials $x^iy^j$ [/i] appearing in $P$.

2014 Math Prize For Girls Problems, 19

Let $n$ be a positive integer. Let $(a, b, c)$ be a random ordered triple of nonnegative integers such that $a + b + c = n$, chosen uniformly at random from among all such triples. Let $M_n$ be the expected value (average value) of the largest of $a$, $b$, and $c$. As $n$ approaches infinity, what value does $\frac{M_n}{n}$ approach?

2014 USAMTS Problems, 4:

Nine distinct positive integers are arranged in a circle such that the product of any two non-adjacent numbers in the circle is a multiple of $n$ and the product of any two adjacent numbers in the circle is not a multiple of $n$, where $n$ is a fixed positive integer. Find the smallest possible value for $n$.

2003 AIME Problems, 12

The members of a distinguished committee were choosing a president, and each member gave one vote to one of the $27$ candidates. For each candidate, the exact percentage of votes the candidate got was smaller by at least $1$ than the number of votes for that candidate. What is the smallest possible number of members of the committee?

2009 USAMTS Problems, 1

Jeremy has a magic scale, each side of which holds a positive integer. He plays the following game: each turn, he chooses a positive integer $n$. He then adds $n$ to the number on the left side of the scale, and multiplies by $n$ the number on the right side of the scale. (For example, if the turn starts with $4$ on the left and $6$ on the right, and Jeremy chooses $n = 3$, then the turn ends with $7$ on the left and $18$ on the right.) Jeremy wins if he can make both sides of the scale equal. (a) Show that if the game starts with the left scale holding $17$ and the right scale holding $5$, then Jeremy can win the game in $4$ or fewer turns. (b) Prove that if the game starts with the right scale holding $b$, where $b\geq 2$, then Jeremy can win the game in $b-1$ or fewer turns.

2008 Bulgaria Team Selection Test, 3

Let $G$ be a directed graph with infinitely many vertices. It is known that for each vertex the outdegree is greater than the indegree. Let $O$ be a fixed vertex of $G$. For an arbitrary positive number $n$, let $V_{n}$ be the number of vertices which can be reached from $O$ passing through at most $n$ edges ( $O$ counts). Find the smallest possible value of $V_{n}$.

2015 International Zhautykov Olympiad, 2

Let $ A_n $ be the set of partitions of the sequence $ 1,2,..., n $ into several subsequences such that every two neighbouring terms of each subsequence have different parity,and $ B_n $ the set of partitions of the sequence $ 1,2,..., n $ into several subsequences such that all the terms of each subsequence have the same parity ( for example,the partition $ {(1,4,5,8),(2,3),(6,9),(7)} $ is an element of $ A_9 $,and the partition $ {(1,3,5),(2,4),(6)} $ is an element of $ B_6 $ ). Prove that for every positive integer $ n $ the sets $ A_n $ and $ B_{n+1} $ contain the same number of elements.

1993 Balkan MO, 2

A positive integer given in decimal representation $\overline{ a_na_{n-1} \ldots a_1a_0 }$ is called [i]monotone[/i] if $a_n\leq a_{n-1} \leq \cdots \leq a_0$. Determine the number of monotone positive integers with at most 1993 digits.

1946 Putnam, B5

Show that $\lceil (\sqrt{3}+1)^{2n})\rceil$ is divisible by $2^{n+1}.$

2009 Princeton University Math Competition, 2

It is known that a certain mechanical balance can measure any object of integer mass anywhere between 1 and 2009 (both included). This balance has $k$ weights of integral values. What is the minimum $k$ for which there exist weights that satisfy this condition?

2010 Turkey MO (2nd round), 1

In a country, there are some two-way roads between the cities. There are $2010$ roads connected to the capital city. For all cities different from the capital city, there are less than $2010$ roads connected to that city. For two cities, if there are the same number of roads connected to these cities, then this number is even. $k$ roads connected to the capital city will be deleted. It is wanted that whatever the road network is, if we can reach from one city to another at the beginning, then we can reach after the deleting process also. Find the maximum value of $k.$

2006 Macedonia National Olympiad, 5

All segments joining $n$ points (no three of which are collinear) are coloured in one of $k$ colours. What is the smallest $k$ for which there always exists a closed polygonal line with the vertices at some of the $n$ points, whose sides are all of the same colour?

2002 USA Team Selection Test, 4

Let $n$ be a positive integer and let $S$ be a set of $2^n+1$ elements. Let $f$ be a function from the set of two-element subsets of $S$ to $\{0, \dots, 2^{n-1}-1\}$. Assume that for any elements $x, y, z$ of $S$, one of $f(\{x,y\}), f(\{y,z\}), f(\{z, x\})$ is equal to the sum of the other two. Show that there exist $a, b, c$ in $S$ such that $f(\{a,b\}), f(\{b,c\}), f(\{c,a\})$ are all equal to 0.

2005 All-Russian Olympiad, 3

Given 2005 distinct numbers $a_1,\,a_2,\dots,a_{2005}$. By one question, we may take three different indices $1\le i<j<k\le 2005$ and find out the set of numbers $\{a_i,\,a_j,\,a_k\}$ (unordered, of course). Find the minimal number of questions, which are necessary to find out all numbers $a_i$.

1995 Putnam, 6

For any $a>0$,set $\mathcal{S}(a)=\{\lfloor{na}\rfloor|n\in \mathbb{N}\}$. Show that there are no three positive reals $a,b,c$ such that \[ \mathcal{S}(a)\cap \mathcal{S}(b)=\mathcal{S}(b)\cap \mathcal{S}(c)=\mathcal{S}(c)\cap \mathcal{S}(a)=\emptyset \] \[ \mathcal{S}(a)\cup \mathcal{S}(b)\cup \mathcal{S}(c)=\mathbb{N} \]

1987 IMO Longlists, 49

In the coordinate system in the plane we consider a convex polygon $W$ and lines given by equations $x = k, y = m$, where $k$ and $m$ are integers. The lines determine a tiling of the plane with unit squares. We say that the boundary of $W$ intersects a square if the boundary contains an interior point of the square. Prove that the boundary of $W$ intersects at most $4 \lceil d \rceil $ unit squares, where $d$ is the maximal distance of points belonging to $W$ (i.e., the diameter of $W$) and $\lceil d \rceil$ is the least integer not less than $d.$

2013 Stanford Mathematics Tournament, 20

Ben is throwing darts at a circular target with diameter 10. Ben never misses the target when he throws a dart, but he is equally likely to hit any point on the target. Ben gets $\lceil 5-x \rceil$ points for having the dart land $x$ units away from the center of the target. What is the expected number of points that Ben can earn from throwing a single dart? (Note that $\lceil y \rceil$ denotes the smallest integer greater than or equal to $y$.)

2014 Dutch BxMO/EGMO TST, 5

Let $n$ be a positive integer. Daniel and Merlijn are playing a game. Daniel has $k$ sheets of paper lying next to each other on a table, where $k$ is a positive integer. On each of the sheets, he writes some of the numbers from $1$ up to $n$ (he is allowed to write no number at all, or all numbers). On the back of each of the sheets, he writes down the remaining numbers. Once Daniel is finished, Merlijn can flip some of the sheets of paper (he is allowed to flip no sheet at all, or all sheets). If Merlijn succeeds in making all of the numbers from $1$ up to n visible at least once, then he wins. Determine the smallest $k$ for which Merlijn can always win, regardless of Daniel’s actions.

2010 Iran MO (3rd Round), 4

suppose that $\mathcal F\subseteq X^{(K)}$ and $|X|=n$. we know that for every three distinct elements of $\mathcal F$ like $A,B$ and $C$ we have $A\cap B \not\subset C$. a)(10 points) Prove that : \[|\mathcal F|\le \dbinom{k}{\lfloor\frac{k}{2}\rfloor}+1\] b)(15 points) if elements of $\mathcal F$ do not necessarily have $k$ elements, with the above conditions show that: \[|\mathcal F|\le \dbinom{n}{\lceil\frac{n-2}{3}\rceil}+2\]

2011 AMC 10, 2

A small bottle of shampoo can hold 35 milliliters of shampoo, whereas a large bottle can hold 500 milliliters of shampoo. Jasmine wants to buy the minimum number of small bottles necessary to completely fill a large bottle. How many bottles must she buy? $ \textbf{(A)}\ 11 \qquad\textbf{(B)}\ 12 \qquad\textbf{(C)}\ 13\qquad\textbf{(D)}\ 14\qquad\textbf{(E)}\ 15 $

2010 CHMMC Fall, 4

Suppose $a$ is a real number such that $3a + 6$ is the greatest integer less than or equal to $a$ and $4a + 9$ is the least integer greater than or equal to $a$. Compute $a$.

2010 Romania Team Selection Test, 2

(a) Given a positive integer $k$, prove that there do not exist two distinct integers in the open interval $(k^2, (k + 1)^2)$ whose product is a perfect square. (b) Given an integer $n > 2$, prove that there exist $n$ distinct integers in the open interval $(k^n, (k + 1)^n)$ whose product is the $n$-th power of an integer, for all but a finite number of positive integers $k$. [i]AMM Magazine[/i]

2012 Romanian Masters In Mathematics, 5

Given a positive integer $n\ge 3$, colour each cell of an $n\times n$ square array with one of $\lfloor (n+2)^2/3\rfloor$ colours, each colour being used at least once. Prove that there is some $1\times 3$ or $3\times 1$ rectangular subarray whose three cells are coloured with three different colours. [i](Russia) Ilya Bogdanov, Grigory Chelnokov, Dmitry Khramtsov[/i]

2005 IberoAmerican, 2

A flea jumps in a straight numbered line. It jumps first from point $0$ to point $1$. Afterwards, if its last jump was from $A$ to $B$, then the next jump is from $B$ to one of the points $B + (B - A) - 1$, $B + (B - A)$, $B + (B-A) + 1$. Prove that if the flea arrived twice at the point $n$, $n$ positive integer, then it performed at least $\lceil 2\sqrt n\rceil$ jumps.

2010 Contests, 1

The integer number $n > 1$ is given and a set $S \subset \{0, 1, 2, \ldots, n-1\}$ with $|S| > \frac{3}{4} n$. Prove that there exist integer numbers $a, b, c$ such that the remainders after the division by $n$ of the numbers: \[a, b, c, a+b, b+c, c+a, a+b+c\] belong to $S$.