This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 247

2005 France Team Selection Test, 4

Let $X$ be a non empty subset of $\mathbb{N} = \{1,2,\ldots \}$. Suppose that for all $x \in X$, $4x \in X$ and $\lfloor \sqrt{x} \rfloor \in X$. Prove that $X=\mathbb{N}$.

2012 Iran MO (3rd Round), 3

Prove that for each $n \in \mathbb N$ there exist natural numbers $a_1<a_2<...<a_n$ such that $\phi(a_1)>\phi(a_2)>...>\phi(a_n)$. [i]Proposed by Amirhossein Gorzi[/i]

2010 Baltic Way, 10

Let $n$ be an integer with $n\ge 3$. Consider all dissections of a convex $n$-gon into triangles by $n-3$ non-intersecting diagonals, and all colourings of the triangles with black and white so that triangles with a common side are always of a different colour. Find the least possible number of black triangles.

1985 USAMO, 4

There are $n$ people at a party. Prove that there are two people such that, of the remaining $n-2$ people, there are at least $\left\lfloor\frac{n}{2}\right\rfloor-1$ of them, each of whom either knows both or else knows neither of the two. Assume that knowing is a symmetric relation, and that $\lfloor x\rfloor$ denotes the greatest integer less than or equal to $x$.

2008 Bulgaria Team Selection Test, 3

Let $G$ be a directed graph with infinitely many vertices. It is known that for each vertex the outdegree is greater than the indegree. Let $O$ be a fixed vertex of $G$. For an arbitrary positive number $n$, let $V_{n}$ be the number of vertices which can be reached from $O$ passing through at most $n$ edges ( $O$ counts). Find the smallest possible value of $V_{n}$.

PEN O Problems, 29

Let $A$ be a set of $N$ residues $\pmod{N^2}$. Prove that there exists a set $B$ of $N$ residues $\pmod{N^2}$ such that the set $A+B=\{a+b \vert a \in A, b \in B \}$ contains at least half of all the residues $\pmod{N^2}$.

2004 South africa National Olympiad, 3

Find all real numbers $x$ such that $x\lfloor x\lfloor x\lfloor x\rfloor\rfloor\rfloor=88$. The notation $\lfloor x\rfloor$ means the greatest integer less than or equal to $x$.

2012 JBMO ShortLists, 2

On a board there are $n$ nails, each two connected by a rope. Each rope is colored in one of $n$ given distinct colors. For each three distinct colors, there exist three nails connected with ropes of these three colors. a) Can $n$ be $6$ ? b) Can $n$ be $7$ ?

2003 China Team Selection Test, 3

Suppose $A\subset \{(a_1,a_2,\dots,a_n)\mid a_i\in \mathbb{R},i=1,2\dots,n\}$. For any $\alpha=(a_1,a_2,\dots,a_n)\in A$ and $\beta=(b_1,b_2,\dots,b_n)\in A$, we define \[ \gamma(\alpha,\beta)=(|a_1-b_1|,|a_2-b_2|,\dots,|a_n-b_n|), \] \[ D(A)=\{\gamma(\alpha,\beta)\mid\alpha,\beta\in A\}. \] Please show that $|D(A)|\geq |A|$.

2009 USAMO, 2

Let $n$ be a positive integer. Determine the size of the largest subset of $\{ -n, -n+1, \dots, n-1, n\}$ which does not contain three elements $a$, $b$, $c$ (not necessarily distinct) satisfying $a+b+c=0$.

1995 Iran MO (2nd round), 2

Let $n \geq 0$ be an integer. Prove that \[ \lceil \sqrt n +\sqrt{n+1}+\sqrt{n+2} \rceil = \lceil \sqrt{9n+8} \rceil\] Where $\lceil x \rceil $ is the smallest integer which is greater or equal to $x.$

2009 Tuymaada Olympiad, 2

A necklace consists of 100 blue and several red beads. It is known that every segment of the necklace containing 8 blue beads contain also at least 5 red beads. What minimum number of red beads can be in the necklace? [i]Proposed by A. Golovanov[/i]

2001 All-Russian Olympiad, 1

The integers from $1$ to $999999$ are partitioned into two groups: the first group consists of those integers for which the closest perfect square is odd, whereas the second group consists of those for which the closest perfect square is even. In which group is the sum of the elements greater?

2011 Vietnam National Olympiad, 4

A convex pentagon $ABCDE$ satisfies that the sidelengths and $AC,AD\leq \sqrt 3.$ Let us choose $2011$ distinct points inside this pentagon. Prove that there exists an unit circle with centre on one edge of the pentagon, and which contains at least $403$ points out of the $2011$ given points. {Edited} {I posted it correctly before but because of a little confusion deleted the sidelength part, sorry.}

2010 Contests, 2

Let $P(x)$ be a polynomial with real coefficients. Prove that there exist positive integers $n$ and $k$ such that $k$ has $n$ digits and more than $P(n)$ positive divisors.

2008 ITest, 61

Find the units digit in the decimal expansion of \[\left(2008+\sqrt{4032000}\right)^{2000}+\left(2008+\sqrt{4032000}\right)^{2001}+\left(2008+\sqrt{4032000}\right)^{2002}+\]\[\cdots+\left(2008+\sqrt{4032000}\right)^{2007}+\left(2008+\sqrt{4032000}\right)^{2008}.\]

1997 Romania Team Selection Test, 4

Let $p,q,r$ be distinct prime numbers and let \[A=\{p^aq^br^c\mid 0\le a,b,c\le 5\} \] Find the least $n\in\mathbb{N}$ such that for any $B\subset A$ where $|B|=n$, has elements $x$ and $y$ such that $x$ divides $y$. [i]Ioan Tomescu[/i]

2001 All-Russian Olympiad, 1

The integers from $1$ to $999999$ are partitioned into two groups: the first group consists of those integers for which the closest perfect square is odd, whereas the second group consists of those for which the closest perfect square is even. In which group is the sum of the elements greater?

2014 NIMO Problems, 6

Suppose $x$ is a random real number between $1$ and $4$, and $y$ is a random real number between $1$ and $9$. If the expected value of \[ \left\lceil \log_2 x \right\rceil - \left\lfloor \log_3 y \right\rfloor \] can be expressed as $\frac mn$ where $m$ and $n$ are relatively prime positive integers, compute $100m + n$. [i]Proposed by Lewis Chen[/i]

1999 Baltic Way, 6

What is the least number of moves it takes a knight to get from one corner of an $n\times n$ chessboard, where $n\ge 4$, to the diagonally opposite corner?

2001 AIME Problems, 2

Each of the 2001 students at a high school studies either Spanish or French, and some study both. The number who study Spanish is between 80 percent and 85 percent of the school population, and the number who study French is between 30 percent and 40 percent. Let $m$ be the smallest number of students who could study both languages, and let $M$ be the largest number of students who could study both languages. Find $M-m$.

2007 AIME Problems, 7

Let \[N= \sum_{k=1}^{1000}k(\lceil \log_{\sqrt{2}}k\rceil-\lfloor \log_{\sqrt{2}}k \rfloor).\] Find the remainder when N is divided by 1000. (Here $\lfloor x \rfloor$ denotes the greatest integer that is less than or equal to x, and $\lceil x \rceil$ denotes the least integer that is greater than or equal to x.)

2012 ELMO Shortlist, 4

A tournament on $2k$ vertices contains no $7$-cycles. Show that its vertices can be partitioned into two sets, each with size $k$, such that the edges between vertices of the same set do not determine any $3$-cycles. [i]Calvin Deng.[/i]

2009 China Team Selection Test, 2

Let $ n,k$ be given positive integers satisfying $ k\le 2n \minus{} 1$. On a table tennis tournament $ 2n$ players take part, they play a total of $ k$ rounds match, each round is divided into $ n$ groups, each group two players match. The two players in different rounds can match on many occasions. Find the greatest positive integer $ m \equal{} f(n,k)$ such that no matter how the tournament processes, we always find $ m$ players each of pair of which didn't match each other.

2008 Kazakhstan National Olympiad, 1

Let $ F_n$ be a set of all possible connected figures, that consist of $ n$ unit cells. For each element $ f_n$ of this set, let $ S(f_n)$ be the area of that minimal rectangle that covers $ f_n$ and each side of the rectangle is parallel to the corresponding side of the cell. Find $ max(S(f_n))$,where $ f_n\in F_n$? Remark: Two cells are called connected if they have a common edge.