This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 189

2010 Saint Petersburg Mathematical Olympiad, 7

$200 \times 200$ square is colored in chess order. In one move we can take every $2 \times 3$ rectangle and change color of all its cells. Can we make all cells of square in same color ?

1967 All Soviet Union Mathematical Olympiad, 091

"KING-THE SUICIDER" Given a chess-board $1000\times 1000$, $499$ white castles and a black king. Prove that it does not matter neither the initial situation nor the way white plays, but the king can always enter under the check in a finite number of moves.

1992 India National Olympiad, 7

Let $n\geq 3$ be an integer. Find the number of ways in which one can place the numbers $1, 2, 3, \ldots, n^2$ in the $n^2$ squares of a $n \times n$ chesboard, one on each, such that the numbers in each row and in each column are in arithmetic progression.

1989 IMO Longlists, 64

A natural number is written in each square of an $ m \times n$ chess board. The allowed move is to add an integer $ k$ to each of two adjacent numbers in such a way that non-negative numbers are obtained. (Two squares are adjacent if they have a common side.) Find a necessary and sufficient condition for it to be possible for all the numbers to be zero after finitely many operations.

2011 Armenian Republican Olympiads, Problem 6

Find the smallest $n$ such that in an $8\times 8$ chessboard any $n$ cells contain two cells which are at least $3$ knight moves apart from each other.

2016 Federal Competition For Advanced Students, P2, 3

Consider arrangements of the numbers $1$ through $64$ on the squares of an $8\times 8$ chess board, where each square contains exactly one number and each number appears exactly once. A number in such an arrangement is called super-plus-good, if it is the largest number in its row and at the same time the smallest number in its column. Prove or disprove each of the following statements: (a) Each such arrangement contains at least one super-plus-good number. (b) Each such arrangement contains at most one super-plus-good number. Proposed by Gerhard J. Woeginger

1997 Tournament Of Towns, (550) 4

We want to draw a number of straight lines such that for each square of a chessboard, at least one of the lines passes through an interior point of the square. What is the smallest number of lines needed for a (a) $3\times 3$; (b) $4\times 4$ chessboard? Use a picture to show that this many lines are enough, and prove that no smaller number would do. (M Vyalyi)

1971 Poland - Second Round, 1

In how many ways can you choose $ k $ squares on a chessboard $ n \times n $ ( $ k \leq n $) so that no two of the chosen squares lie in the same row or column?

1983 Tournament Of Towns, (048) 5

$N^2$ pieces are placed on an $N \times N$ chessboard. Is it possible to rearrange them in such a way that any two pieces which can capture each other (when considered to be knights) after the rearrangement are on adjacent squares (i.e. squares having at least one common boundary point)? Consider two cases: (a) $N = 3$. (b) $N = 8$ (S Stefanov)

2003 Estonia National Olympiad, 5

For which positive integers $n$ is it possible to cover a $(2n+1) \times (2n+1)$ chessboard which has one of its corner squares cut out with tiles shown in the figure (each tile covers exactly $4$ squares, tiles can be rotated and turned around)? [img]https://cdn.artofproblemsolving.com/attachments/6/5/8fddeefc226ee0c02353a1fc11e48ce42d8436.png[/img]

2019 South Africa National Olympiad, 4

The squares of an $8 \times 8$ board are coloured alternatingly black and white. A rectangle consisting of some of the squares of the board is called [i]important[/i] if its sides are parallel to the sides of the board and all its corner squares are coloured black. The side lengths can be anything from $1$ to $8$ squares. On each of the $64$ squares of the board, we write the number of important rectangles in which it is contained. The sum of the numbers on the black squares is $B$, and the sum of the numbers on the white squares is $W$. Determine the difference $B - W$.

2010 Lithuania National Olympiad, 3

In an $m\times n$ rectangular chessboard,there is a stone in the lower leftmost square. Two persons A,B move the stone alternately. In each step one can move the stone upward or rightward any number of squares. The one who moves it into the upper rightmost square wins. Find all $(m,n)$ such that the first person has a winning strategy.

2013 Bosnia And Herzegovina - Regional Olympiad, 4

$a)$ Is it possible, on modified chessboard $20 \times 30$, to draw a line which cuts exactly $50$ cells where chessboard cells are squares $1 \times 1$ $b)$ What is the maximum number of cells which line can cut on chessboard $m \times n$, $m,n \in \mathbb{N}$

1987 Poland - Second Round, 3

On a chessboard with dimensions 1000 by 1000 and squares colored in the usual way in white and black, there is a set A consisting of 1000 squares. Any two fields of set A can be connected by a sequence of fields of set A so that subsequent fields have a common side. Prove that there are at least 250 white fields in set A.

2016 IFYM, Sozopol, 2

A cell is cut from a chessboard $8\, x\, 8$, after which an open broken line was built, which vertices are the centers of the remaining cells. Each segment of the broken line has a length $\sqrt{17}$ or $\sqrt{65}$. When is the number of such broken lines bigger – when the cut cell is $(1,2)$ or $(3,6)$? (The rows and columns on the board are numerated consecutively from 1 to 8.)

2000 Tournament Of Towns, 5

What is the largest number of knights that can be put on a $5 \times 5$ chess board so that each knight attacks exactly two other knights? (M Gorelov)

2019 Brazil Team Selection Test, 4

Consider a checkered board $2m \times 2n$, $m, n \in \mathbb{Z}_{>0}$. A stone is placed on one of the unit squares on the board, this square is different from the upper right square and from the lower left square. A snail goes from the bottom left square and wants to get to the top right square, walking from one square to other adjacent, one square at a time (two squares are adjacent if they share an edge). Determine all the squares the stone can be in so that the snail can complete its path by visiting each square exactly one time, except the square with the stone, which the snail does not visit.

2022 OMpD, 1

Consider a chessboard $6 \times 6$, made up of $36$ single squares. We want to place $6$ chess rooks on this board, one rook on each square, so that there are no two rooks on the same row, nor two rooks on the same column. Note that, once the rooks have been placed in this way, we have that, for every square where a rook has not been placed, there is a rook in the same row as it and a rook in the same column as it. We will say that such rooks are in line with this square. For each of those $30$ houses without rooks, color it green if the two rooks aligned with that same house are the same distance from it, and color it yellow otherwise. For example, when we place the $6$ rooks ($T$) as below, we have: (a) Is it possible to place the rooks so that there are $30$ green squares? (b) Is it possible to place the rooks so that there are $30$ yellow squares? (c) Is it possible to place the rooks so that there are $15$ green and $15$ yellow squares?

2021 Kyiv City MO Round 1, 11.2

Chess piece called [i]skew knight[/i], if placed on the black square, attacks all the gray squares. [img]https://i.ibb.co/HdTDNjN/Kyiv-MO-2021-Round-1-11-2.png[/img] What is the largest number of such knights that can be placed on the $8\times 8$ chessboard without them attacking each other? [i]Proposed by Arsenii Nikolaiev[/i]

1976 Dutch Mathematical Olympiad, 3

In how many ways can the king in the chessboard reach the eighth rank in $7$ moves from its original square on the first row?

2003 Estonia National Olympiad, 5

Is it possible to cover an $n \times n$ chessboard which has its center square cut out with tiles shown in the picture (each tile covers exactly $4$ squares, tiles can be rotated and turned around) if a) $n = 5$, b) $n = 2003$? [img]https://cdn.artofproblemsolving.com/attachments/6/5/8fddeefc226ee0c02353a1fc11e48ce42d8436.png[/img]

Novosibirsk Oral Geo Oly VIII, 2020.2

Vitya cut the chessboard along the borders of the cells into pieces of the same perimeter. It turned out that not all of the received parts are equal. What is the largest possible number of parts that Vitya could get?

2022 Olympic Revenge, Problem 3

positive real $C$ is $n-vengeful$ if it is possible to color the cells of an $n \times n$ chessboard such that: i) There is an equal number of cells of each color. ii) In each row or column, at least $Cn$ cells have the same color. a) Show that $\frac{3}{4}$ is $n-vengeful$ for infinitely many values of $n$. b) Show that it does not exist $n$ such that $\frac{4}{5}$ is $n-vengeful$.

1999 Estonia National Olympiad, 5

On the squares $a1, a2,... , a8$ of a chessboard there are respectively $2^0, 2^1, ..., 2^7$ grains of oat, on the squares $b8, b7,..., b1$ respectively $2^8, 2^9, ..., 2^{15}$ grains of oat, on the squares $c1, c2,..., c8$ respectively $2^{16}, 2^{17}, ..., 2^{23}$ grains of oat etc. (so there are $2^{63}$ grains of oat on the square $h1$). A knight starts moving from some square and eats after each move all the grains of oat on the square to which it had jumped, but immediately after the knight leaves the square the same number of grains of oat reappear. With the last move the knight arrives to the same square from which it started moving. Prove that the number of grains of oat eaten by the knight is divisible by $3$.

2020 LIMIT Category 1, 15

In a $4\times 4$ chessboard, in how many ways can you place $3$ rooks and one bishop such that none of these pieces threaten another piece?