This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 821

2004 Tournament Of Towns, 5

The parabola $y = x^2$ intersects a circle at exactly two points $A$ and $B$. If their tangents at $A$ coincide, must their tangents at $B$ also coincide?

1983 All Soviet Union Mathematical Olympiad, 351

Three disks touch pairwise from outside in the points $X,Y,Z$. Then the radiuses of the disks were expanded by $2/\sqrt3$ times, and the centres were reserved. Prove that the triangle $XYZ$ is completely covered by the expanded disks.

2014 Indonesia MO Shortlist, C6

Determine all natural numbers $n$ so that numbers $1, 2,... , n$ can be placed on the circumference of a circle and for each natural number $s$ with $1\le s \le \frac12n(n+1)$ , there is a circular arc which has the sum of all numbers in that arc to be $s$.

2014 AMC 8, 25

Tags: ratio , geometry , path , circles
A straight one-mile stretch of highway, $40$ feet wide, is closed. Robert rides his bike on a path composed of semicircles as shown. If he rides at $5$ miles per hour, how many hours will it take to cover the one-mile stretch? Note: $1$ mile= $5280$ feet [asy]size(10cm); pathpen=black; pointpen=black; D(arc((-2,0),1,300,360)); D(arc((0,0),1,0,180)); D(arc((2,0),1,180,360)); D(arc((4,0),1,0,180)); D(arc((6,0),1,180,240)); D((-1.5,1)--(5.5,1)); D((-1.5,0)--(5.5,0),dashed); D((-1.5,-1)--(5.5,-1)); [/asy] $\textbf{(A) }\frac{\pi}{11}\qquad\textbf{(B) }\frac{\pi}{10}\qquad\textbf{(C) }\frac{\pi}{5}\qquad\textbf{(D) }\frac{2\pi}{5}\qquad \textbf{(E) }\frac{2\pi}{3}$

2000 Mongolian Mathematical Olympiad, Problem 2

Tags: geometry , circles
Circles $\omega_1,\omega_2,\omega_3$ with centers $O_1,O_2,O_3$, respectively, are externally tangent to each other. The circle $\omega_1$ touches $\omega_2$ at $P_1$ and $\omega_3$ at $P_2$. For any point $A$ on $\omega_1$, $A_1$ denotes the point symmetric to $A$ with respect to $O_1$. Show that the intersection points of $AP_2$ with $\omega_3$, $A_1P_3$ with $\omega_2$, and $AP_3$ with $A_1P_2$ lie on a line.

2016 Bosnia and Herzegovina Team Selection Test, 1

Let $ABCD$ be a quadrilateral inscribed in circle $k$. Lines $AB$ and $CD$ intersect at point $E$ such that $AB=BE$. Let $F$ be the intersection point of tangents on circle $k$ in points $B$ and $D$, respectively. If the lines $AB$ and $DF$ are parallel, prove that $A$, $C$ and $F$ are collinear.

Geometry Mathley 2011-12, 12.4

Tags: concyclic , circles
Quadrilateral$ ABCD$ has two diagonals $AC,BD$ that are mutually perpendicular. Let $M$ be the Miquel point of the complete quadrilateral formed by lines $AB,BC,CD,DA$. Suppose that $L$ is the intersection of two circles $(MAC)$ and $(MBD)$. Prove that the circumcenters of triangles $LAB,LBC,LCD,LDA$ are on the same circle called $\omega$ and that three circles $(MAC), (MBD), \omega$ are pairwise orthogonal. Nguyễn Văn Linh

Estonia Open Senior - geometry, 2013.2.3

Circles $c_1, c_2$ with centers $O_1, O_2$, respectively, intersect at points $P$ and $Q$ and touch circle c internally at points $A_1$ and $A_2$, respectively. Line $PQ$ intersects circle c at points $B$ and $D$. Lines $A_1B$ and $A_1D$ intersect circle $c_1$ the second time at points $E_1$ and $F_1$, respectively, and lines $A_2B$ and $A_2D$ intersect circle $c_2$ the second time at points $ E_2$ and $F_2$, respectively. Prove that $E_1, E_2, F_1, F_2$ lie on a circle whose center coincides with the midpoint of line segment $O_1O_2$.

1982 IMO Shortlist, 12

Four distinct circles $C,C_1, C_2$, C3 and a line L are given in the plane such that $C$ and $L$ are disjoint and each of the circles $C_1, C_2, C_3$ touches the other two, as well as $C$ and $L$. Assuming the radius of $C$ to be $1$, determine the distance between its center and $L.$

Durer Math Competition CD Finals - geometry, 2016.C+4

Tags: circles , geometry
The two intersections of the circles $k_i$ and $k_{i + 1}$ are $P_i$ and $Q_i$ ($1 \le i \le 5, k_6 = k_1$). On the circle $k_1$ lies an arbitrary point $A$. Then the points $B, C, D, E, F, G, H, I, J, K$ lie on the circles $k_2, k_3, k_4, k_5, k_1, k_2, k_3, k_4, k_5, k_1$ respectively, such that $AP_1B, BP_2C, CP_3D, DP_4E, EP_5F, F Q_1G, GQ_2H, HQ_3I, IQ_4J, JQ_5K$ are straight line triplets. Prove that that $K = A$. [img]https://1.bp.blogspot.com/-g6rF1hcPE08/X9j1SEJT7-I/AAAAAAAAMzc/2rWIiWTHZ34zfWVeGujkCxRW1hSCw5oOwCLcBGAsYHQ/s16000/2016%2BDurer%2BC..4.png[/img] [i]Circles can have different radii, and They can be located in different ways from the figure. We assume that during editing none neither of the two points mentioned above coincide.[/i]

2017 Czech-Polish-Slovak Match, 2

Let ${\omega}$ be the circumcircle of an acute-angled triangle ${ABC}$. Point ${D}$ lies on the arc ${BC}$ of ${\omega}$ not containing point ${A}$. Point ${E}$ lies in the interior of the triangle ${ABC}$, does not lie on the line ${AD}$, and satis fies ${\angle DBE =\angle ACB}$ and ${\angle DCE = \angle ABC}$. Let ${F}$ be a point on the line ${AD}$ such that lines ${EF}$ and ${BC}$ are parallel, and let ${G}$ be a point on ${\omega}$ different from ${A}$ such that ${AF = FG}$. Prove that points ${D,E, F,G}$ lie on one circle. (Slovakia)

1986 Tournament Of Towns, (123) 5

Find the locus of the orthocentres (i.e. the point where three altitudes meet) of the triangles inscribed in a given circle . (A. Andjans, Riga)

Estonia Open Junior - geometry, 2003.1.4

Tags: circles , area , geometry
Mari and Juri ordered a round pizza. Juri cut the pizza into four pieces by two straight cuts, none of which passed through the centre point of the pizza. Mari can choose two pieces not aside of these four, and Juri gets the rest two pieces. Prove that if Mari chooses the piece that covers the centre point of the pizza, she will get more pizza than Juri.

2016 Bosnia And Herzegovina - Regional Olympiad, 3

Tags: circles , geometry
Circle of radius $R_1$ is inscribed in an acute angle $\alpha$. Second circle with radius $R_2$ touches one of the sides forming the angle $\alpha$ in same point as first circle and intersects the second side in points $A$ and $B$, such that centers of both circles lie inside angle $\alpha$. Prove that $$AB=4\cos{\frac{\alpha}{2}}\sqrt{(R_2-R_1)\left(R_1 \cos^2 \frac{\alpha}{2}+R_2 \sin^2 \frac{\alpha}{2}\right)}$$

2006 Sharygin Geometry Olympiad, 8.3

A parallelogram $ABCD$ is given. Two circles with centers at the vertices $A$ and $C$ pass through $B$. The straight line $\ell$ that passes through $B$ and crosses the circles at second time at points $X, Y$ respectively. Prove that $DX = DY$.

1955 Moscow Mathematical Olympiad, 297

Given two distinct nonintersecting circles none of which is inside the other. Find the locus of the midpoints of all segments whose endpoints lie on the circles.

2007 All-Russian Olympiad, 4

[i]A. Akopyan, A. Akopyan, A. Akopyan, I. Bogdanov[/i] A conjurer Arutyun and his assistant Amayak are going to show following super-trick. A circle is drawn on the board in the room. Spectators mark $2007$ points on this circle, after that Amayak removes one of them. Then Arutyun comes to the room and shows a semicircle, to which the removed point belonged. Explain, how Arutyun and Amayak may show this super-trick.

2008 Princeton University Math Competition, B6

Tags: circles
Circles $A, B$, and $C$ each have radius $r$, and their centers are the vertices of an equilateral triangle of side length $6r$. Two lines are drawn, one tangent to $A$ and $C$ and one tangent to $B$ and $C$, such that $A$ is on the opposite side of each line from $B$ and $C$. Find the sine of the angle between the two lines. [img]http://4.bp.blogspot.com/-IZv8q-3NYZg/XXmrroy2PnI/AAAAAAAAKxg/jSOcOOQ8Kyw0EwHUifXJ1jOd2ENAo1FfACK4BGAYYCw/s200/2008%2Bpumac%2Bb6.png[/img]

2014 Contests, 2

Let $ABCD$ be an inscribed quadrilateral in a circle $c(O,R)$ (of circle $O$ and radius $R$). With centers the vertices $A,B,C,D$, we consider the circles $C_{A},C_{B},C_{C},C_{D}$ respectively, that do not intersect to each other . Circle $C_{A}$ intersects the sides of the quadrilateral at points $A_{1} , A_{2}$ , circle $C_{B}$ intersects the sides of the quadrilateral at points $B_{1} , B_{2}$ , circle $C_{C}$ at points $C_{1} , C_{2}$ and circle $C_{D}$ at points $C_{1} , C_{2}$ . Prove that the quadrilateral defined by lines $A_{1}A_{2} , B_{1}B_{2} , C_{1}C_{2} , D_{1}D_{2}$ is cyclic.

1986 All Soviet Union Mathematical Olympiad, 424

Two circumferences, with the distance $d$ between centres, intersect in points $P$ and $Q$ . Two lines are drawn through the point $A$ on the first circumference ($Q\ne A\ne P$) and points $P$ and $Q$ . They intersect the second circumference in the points $B$ and $C$ . a) Prove that the radius of the circle, circumscribed around the triangle$ABC$ , equals $d$. b) Describe the set of the new circle's centres, if thepoint $A$ moves along all the first circumference.

1995 Chile National Olympiad, 2

Tags: area , arc , circles , geometry
In a circle of radius $1$, six arcs of radius $1$ are drawn, which cut the circle as in the figure. Determine the black area. [img]https://cdn.artofproblemsolving.com/attachments/8/9/0323935be8406ea0c452b3c8417a8148c977e3.jpg[/img]

2014 Sharygin Geometry Olympiad, 20

A quadrilateral $KLMN$ is given. A circle with center $O$ meets its side $KL$ at points $A$ and $A_1$, side $LM$ at points $B$ and $B_1$, etc. Prove that if the circumcircles of triangles $KDA, LAB, MBC$ and $NCD$ concur at point $P$, then a) the circumcircles of triangles $KD_1A_1, LA_1B_1, MB_1C_1$ and $NC1D1$ also concur at some point $Q$; b) point $O$ lies on the perpendicular bisector to $PQ$.

2010 Oral Moscow Geometry Olympiad, 6

Perpendicular bisectors of the sides $BC$ and $AC$ of an acute-angled triangle $ABC$ intersect lines $AC$ and $BC$ at points $M$ and $N$. Let point $C$ move along the circumscribed circle of triangle $ABC$, remaining in the same half-plane relative to $AB$ (while points $A$ and $B$ are fixed). Prove that line $MN$ touches a fixed circle.

2021 JBMO TST - Turkey, 1

In an acute-angled triangle $ABC$, the circle with diameter $[AB]$ intersects the altitude drawn from vertex $C$ at a point $D$ and the circle with diameter $[AC]$ intersects the altitude drawn from vertex $B$ at a point $E$. Let the lines $BD$ and $CE$ intersect at $F$. Prove that $$AF\perp DE$$

2010 Czech And Slovak Olympiad III A, 2

A circular target with a radius of $12$ cm was hit by $19$ shots. Prove that the distance between two hits is less than $7$ cm.