This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 821

2015 Dutch IMO TST, 4

Let $\Gamma_1$ and $\Gamma_2$ be circles - with respective centres $O_1$ and $O_2$ - that intersect each other in $A$ and $B$. The line $O_1A$ intersects $\Gamma_2$ in $A$ and $C$ and the line $O_2A$ intersects $\Gamma_1$ in $A$ and $D$. The line through $B$ parallel to $AD$ intersects $\Gamma_1$ in $B$ and $E$. Suppose that $O_1A$ is parallel to $DE$. Show that $CD$ is perpendicular to $O_2C$.

1966 IMO Shortlist, 16

We are given a circle $K$ with center $S$ and radius $1$ and a square $Q$ with center $M$ and side $2$. Let $XY$ be the hypotenuse of an isosceles right triangle $XY Z$. Describe the locus of points $Z$ as $X$ varies along $K$ and $Y$ varies along the boundary of $Q.$

2016 BMT Spring, 11

Tags: circles , ratio , geometry
Circles $C_1$ and $C_2$ intersect at points $X$ and $Y$ . Point $A$ is a point on $C_1$ such that the tangent line with respect to $C_1$ passing through $A$ intersects $C_2$ at $B$ and $C$, with $A$ closer to $B$ than $C$, such that $2016 \cdot AB = BC$. Line $XY$ intersects line $AC$ at $D$. If circles $C_1$ and $C_2$ have radii of $20$ and $16$, respectively, find $\sqrt{1+BC/BD}$.

2017 Mathematical Talent Reward Programme, MCQ: P 9

From a point $P$ outside of a circle with centre $O$, tangent segments $PA$ and $PB$ are drawn. $\frac{1}{OA^2}+\frac{1}{PA^2}=\frac{1}{16}$ then $AB=$ [list=1] [*] 4 [*] 6 [*] 8 [*] 10 [/list]

2005 Thailand Mathematical Olympiad, 1

Tags: circles , geometry
A point $A$ is chosen outside a circle with diameter $BC$ so that $\vartriangle ABC$ is acute. Segments $AB$ and $AC$ intersect the circle at $D$ and $E$, respectively, and $CD$ intersects $BE$ at $F$. Line $AF$ intersects the circle again at $G$ and intersects $BC$ at $H$. Prove that $AH \cdot F H = GH^2$. .

2021 Indonesia TST, G

The circles $k_1$ and $k_2$ intersect at points $A$ and $B$, and $k_1$ passes through the center $O$ of the circle $k_2$. The line $p$ intersects $k_1$ at the points $K ,O$ and $k_2$ at the points $L ,M$ so that $L$ lies between $K$ and $O$. The point $P$ is the projection of $L$ on the line $AB$. Prove that $KP$ is parallel to the median of triangle $ABM$ drawn from the vertex $M$.

1986 All Soviet Union Mathematical Olympiad, 438

A triangle and a square are circumscribed around the unit circle. Prove that the intersection area is more than $3.4$. Is it possible to assert that it is more than $3.5$?

2016 Abels Math Contest (Norwegian MO) Final, 3a

Three circles $S_A, S_B$, and $S_C$ in the plane with centers in $A, B$, and $C$, respectively, are mutually tangential on the outside. The touchpoint between $S_A$ and $S_B$ we call $C'$, the one $S_A$ between $S_C$ we call $B'$, and the one between $S_B$ and $S_C$ we call $A'$. The common tangent between $S_A$ and $S_C$ (passing through B') we call $\ell_B$, and the common tangent between $S_B$ and $S_C$ (passing through $A'$) we call $\ell_A$. The intersection point of $\ell_A$ and $\ell_B$ is called $X$. The point $Y$ is located so that $\angle XBY$ and $\angle YAX$ are both right angles. Show that the points $X, Y$, and $C'$ lie on a line if and only if $AC = BC$.

1998 Austrian-Polish Competition, 6

Different points $A,B,C,D,E,F$ lie on circle $k$ in this order. The tangents to $k$ in the points $A$ and $D$ and the lines $BF$ and $CE$ have a common point $P$. Prove that the lines $AD,BC$ and $EF$ also have a common point or are parallel.

1966 IMO Shortlist, 1

Given $n>3$ points in the plane such that no three of the points are collinear. Does there exist a circle passing through (at least) $3$ of the given points and not containing any other of the $n$ points in its interior ?

2021 Malaysia IMONST 1, 11

Tags: circles , angle , geometry
Given two points $ A$ and $ B$ and two circles, $\Gamma_1$ with center $A$ and passing through $ B$, and $\Gamma_2$ with center $ B$ and passing through $ A$. Line $AB$ meets $\Gamma_2$ at point $C$. Point $D$ lies on $\Gamma_2$ such that $\angle CDB = 57^o$. Line $BD$ meets $\Gamma_1$ at point $E$. What is $\angle CAE$, in degrees?

2011 Dutch IMO TST, 3

The circles $\Gamma_1$ and $\Gamma_2$ intersect at $D$ and $P$. The common tangent line of the two circles closest to point $D$ touches $\Gamma_1$ in A and $\Gamma_2$ in $B$. The line $AD$ intersects $\Gamma_2$ for the second time in $C$. Let $M$ be the midpoint of line segment $BC$. Prove that $\angle DPM = \angle BDC$.

2012 Tournament of Towns, 4

A quadrilateral $ABCD$ with no parallel sides is inscribed in a circle. Two circles, one passing through $A$ and $B$, and the other through $C$ and $D$, are tangent to each other at $X$. Prove that the locus of $X$ is a circle.

2019 Israel National Olympiad, 7

In the plane points $A,B,C$ are marked in blue and points $P,Q$ are marked in red (no 3 marked points lie on a line, and no 4 marked points lie on a circle). A circle is called [b]separating[/b] if all points of one color are inside it, and all points of the other color are outside of it. Denote by $O$ the circumcenter of $ABC$ and by $R$ the circumradius of $ABC$. Prove that [b]exactly one[/b] of the following holds: [list] [*] There exists a separating circle; [*] There exists a point $X$ on the segment $PQ$ which also lies inside the triangle $ABC$, for which $PX\cdot XQ = R^2-OX^2$.

2015 Belarus Team Selection Test, 2

The medians $AM$ and $BN$ of a triangle $ABC$ are the diameters of the circles $\omega_1$ and $\omega_2$. If $\omega_1$ touches the altitude $CH$, prove that $\omega_2$ also touches $CH$. I. Gorodnin

1962 Putnam, B4

Tags: circles , coloring
The euclidean plane is divided into regions by drawing a finite number of circles. Show that it is possible to color each of these regions either red or blue in such a way that no two adjacent regions have the same color.

Durer Math Competition CD Finals - geometry, 2017.C+1

Given a plane with two circles, one with points $A$ and $B$, and the other with points $C$ and $D$ are shown in the figure. The line $AB$ passes through the center of the first circle and touches the second circle while the line $CD$ passes through the center of the second circle and touches the first circle. Prove that the lines $AD$ and $BC$ are parallel. [img]https://cdn.artofproblemsolving.com/attachments/e/e/92f7b57751e7828a6487a052d4869e27e658b2.png[/img]

1997 Greece Junior Math Olympiad, 4

Consider ten concentric circles and ten rays as in the following figure. At the points where the inner circle is intersected by the rays write successively, in direction clockwise, the numbers $1, 2, 3, 4, 5, 6, 7, 8, 9, 10$. In the next circle we write the numbers $11, 12, 13, 14, 15, 16, 17, 18, 19,20$ successively, and so on successively until the last round were we write the numbers $91, 92, 93, 94, 95, 96, 97, 98, 99, 100$ successively. In this orde, the numbers $1, 11, 21, 31, 41, 51, 61, 71, 81, 91$ are in the same ray, and similarly for the other rays. In front of $50$ of those $100$ numbers, we use the sign ''$-$'' such as: a) in each of the ten rays, exist exactly $5$ signs ''$-$'' , and also b) in each of the ten concentric circles, to be exactly $5$ signs ''$-$''. Prove that the sum of the $100$ signed numbers that occur, equals zero. [img]https://cdn.artofproblemsolving.com/attachments/9/d/ffee6518fcd1b996c31cf06d0ce484a821b4ae.gif[/img]

Geometry Mathley 2011-12, 6.3

Let $AB$ be an arbitrary chord of the circle $(O)$. Two circles $(X)$ and $(Y )$ are on the same side of the chord $AB$ such that they are both internally tangent to $(O)$ and they are tangent to $AB$ at $C,D$ respectively, $C$ is between $A$ and $D$. Let $H$ be the intersection of $XY$ and $AB, M$ the midpoint of arc $AB$ not containing $X$ and $Y$ . Let $HM$ meet $(O)$ again at $I$. Let $IX, IY$ intersect $AB$ again at $K, J$. Prove that the circumcircle of triangle $IKJ$ is tangent to $(O)$. Nguyễn Văn Linh

2018 Iranian Geometry Olympiad, 1

Two circles $\omega_1,\omega_2$ intersect each other at points $A,B$. Let $PQ$ be a common tangent line of these two circles with $P \in \omega_1$ and $Q \in \omega_2$. An arbitrary point $X$ lies on $\omega_1$. Line $AX$ intersects $ \omega_2$ for the second time at $Y$ . Point $Y'\ne Y$ lies on $\omega_2$ such that $QY = QY'$. Line $Y'B$ intersects $ \omega_1$ for the second time at $X'$. Prove that $PX = PX'$. Proposed by Morteza Saghafian

1992 IMO Shortlist, 7

Two circles $ \Omega_{1}$ and $ \Omega_{2}$ are externally tangent to each other at a point $ I$, and both of these circles are tangent to a third circle $ \Omega$ which encloses the two circles $ \Omega_{1}$ and $ \Omega_{2}$. The common tangent to the two circles $ \Omega_{1}$ and $ \Omega_{2}$ at the point $ I$ meets the circle $ \Omega$ at a point $ A$. One common tangent to the circles $ \Omega_{1}$ and $ \Omega_{2}$ which doesn't pass through $ I$ meets the circle $ \Omega$ at the points $ B$ and $ C$ such that the points $ A$ and $ I$ lie on the same side of the line $ BC$. Prove that the point $ I$ is the incenter of triangle $ ABC$. [i]Alternative formulation.[/i] Two circles touch externally at a point $ I$. The two circles lie inside a large circle and both touch it. The chord $ BC$ of the large circle touches both smaller circles (not at $ I$). The common tangent to the two smaller circles at the point $ I$ meets the large circle at a point $ A$, where the points $ A$ and $ I$ are on the same side of the chord $ BC$. Show that the point $ I$ is the incenter of triangle $ ABC$.

2012 India Regional Mathematical Olympiad, 1

Let $ABCD$ be a unit square. Draw a quadrant of the a circle with $A$ as centre and $B,D$ as end points of the arc. Similarly, draw a quadrant of a circle with $B$ as centre and $A,C$ as end points of the arc. Inscribe a circle $\Gamma$ touching the arc $AC$ externally, the arc $BD$ externally and also touching the side $AD$. Find the radius of $\Gamma$.

2012 Ukraine Team Selection Test, 2

$E$ is the intersection point of the diagonals of the cyclic quadrilateral, $ABCD, F$ is the intersection point of the lines $AB$ and $CD, M$ is the midpoint of the side $AB$, and $N$ is the midpoint of the side $CD$. The circles circumscribed around the triangles $ABE$ and $ACN$ intersect for the second time at point $K$. Prove that the points $F, K, M$ and $N$ lie on one circle.

2016 Germany Team Selection Test, 1

The two circles $\Gamma_1$ and $\Gamma_2$ with the midpoints $O_1$ resp. $O_2$ intersect in the two distinct points $A$ and $B$. A line through $A$ meets $\Gamma_1$ in $C \neq A$ and $\Gamma_2$ in $D \neq A$. The lines $CO_1$ and $DO_2$ intersect in $X$. Prove that the four points $O_1,O_2,B$ and $X$ are concyclic.

2006 Estonia Team Selection Test, 4

The side $AC$ of an acute triangle $ABC$ is the diameter of the circle $c_1$ and side $BC$ is the diameter of the circle $c_2$. Let $E$ be the foot of the altitude drawn from the vertex $B$ of the triangle and $F$ the foot of the altitude drawn from the vertex $A$. In addition, let $L$ and $N$ be the points of intersection of the line $BE$ with the circle $c_1$ (the point $L$ lies on the segment $BE$) and the points of intersection of $K$ and $M$ of line $AF$ with circle $c_2$ (point $K$ is in section $AF$). Prove that $K LM N$ is a cyclic quadrilateral.