This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2006 France Team Selection Test, 1

Let $ABCD$ be a square and let $\Gamma$ be the circumcircle of $ABCD$. $M$ is a point of $\Gamma$ belonging to the arc $CD$ which doesn't contain $A$. $P$ and $R$ are respectively the intersection points of $(AM)$ with $[BD]$ and $[CD]$, $Q$ and $S$ are respectively the intersection points of $(BM)$ with $[AC]$ and $[DC]$. Prove that $(PS)$ and $(QR)$ are perpendicular.

1987 IMO Shortlist, 21

In an acute-angled triangle $ABC$ the interior bisector of angle $A$ meets $BC$ at $L$ and meets the circumcircle of $ABC$ again at $N$. From $L$ perpendiculars are drawn to $AB$ and $AC$, with feet $K$ and $M$ respectively. Prove that the quadrilateral $AKNM$ and the triangle $ABC$ have equal areas.[i](IMO Problem 2)[/i] [i]Proposed by Soviet Union.[/i]

2004 Iran MO (3rd Round), 11

assume that ABC is acute traingle and AA' is median we extend it until it meets circumcircle at A". let $AP_a$ be a diameter of the circumcircle. the pependicular from A' to $AP_a$ meets the tangent to circumcircle at A" in the point $X_a$; we define $X_b,X_c$ similary . prove that $X_a,X_b,X_c$ are one a line.

2009 China Team Selection Test, 1

Given that circle $ \omega$ is tangent internally to circle $ \Gamma$ at $ S.$ $ \omega$ touches the chord $ AB$ of $ \Gamma$ at $ T$. Let $ O$ be the center of $ \omega.$ Point $ P$ lies on the line $ AO.$ Show that $ PB\perp AB$ if and only if $ PS\perp TS.$

2019 Junior Balkan Team Selection Tests - Moldova, 11

Let $I$ be the center of inscribed circle of right triangle $\Delta ABC$ with $\angle A = 90$ and point $M$ is the midpoint of $(BC)$.The bisector of $\angle BAC$ intersects the circumcircle of $\Delta ABC $ in point $W$.Point $U$ is situated on the line $AB$ such that the lines $AB$ and $WU$ are perpendiculars.Point $P$ is situated on the line $WU$ such that the lines $PI$ and $WU$ are perpendiculars.Prove that the line $MP$ bisects the segment $CI$.

2014 IberoAmerican, 2

Let $ABC$ be an acute triangle and $H$ its orthocenter. Let $D$ be the intersection of the altitude from $A$ to $BC$. Let $M$ and $N$ be the midpoints of $BH$ and $CH$, respectively. Let the lines $DM$ and $DN$ intersect $AB$ and $AC$ at points $X$ and $Y$ respectively. If $P$ is the intersection of $XY$ with $BH$ and $Q$ the intersection of $XY$ with $CH$, show that $H, P, D, Q$ lie on a circumference.

2018 India IMO Training Camp, 1

Let $ABCD$ be a convex quadrilateral inscribed in a circle with center $O$ which does not lie on either diagonal. If the circumcentre of triangle $AOC$ lies on the line $BD$, prove that the circumcentre of triangle $BOD$ lies on the line $AC$.

2007 Princeton University Math Competition, 3

In triangle $ABC$, let $O$ and $I_A$ be the centers of the circumcircle and the circle tangent to $AB$ and $AC$ and externally tangent to $BC$, and let $R$ and $R_A$ be their radii. Find $ \frac {I_A A \cdot I_A B \cdot I_A C}{R \cdot R_A^2} $.

2000 Poland - Second Round, 2

Bisector of angle $BAC$ of triangle $ABC$ intersects circumcircle of this triangle in point $D \neq A$. Points $K$ and $L$ are orthogonal projections on line $AD$ of points $B$ and $C$, respectively. Prove that $AD \ge BK + CL$.

2025 USA IMO Team Selection Test, 4

Let $ABC$ be a triangle, and let $X$, $Y$, and $Z$ be collinear points such that $AY=AZ$, $BZ=BX$, and $CX=CY$. Points $X'$, $Y'$, and $Z'$ are the reflections of $X$, $Y$, and $Z$ over $BC$, $CA$, and $AB$, respectively. Prove that if $X'Y'Z'$ is a nondegenerate triangle, then its circumcenter lies on the circumcircle of $ABC$. [i]Michael Ren[/i]

2012 Estonia Team Selection Test, 3

In a cyclic quadrilateral $ABCD$ we have $|AD| > |BC|$ and the vertices $C$ and $D$ lie on the shorter arc $AB$ of the circumcircle. Rays $AD$ and $BC$ intersect at point $K$, diagonals $AC$ and $BD$ intersect at point $P$. Line $KP$ intersects the side $AB$ at point $L$. Prove that $\angle ALK$ is acute.

2011 Romania Team Selection Test, 3

Let $ABC$ be a triangle such that $AB<AC$. The perpendicular bisector of the side $BC$ meets the side $AC$ at the point $D$, and the (interior) bisectrix of the angle $ADB$ meets the circumcircle $ABC$ at the point $E$. Prove that the (interior) bisectrix of the angle $AEB$ and the line through the incentres of the triangles $ADE$ and $BDE$ are perpendicular.

2000 Polish MO Finals, 2

Let a triangle $ABC$ satisfy $AC = BC$; in other words, let $ABC$ be an isosceles triangle with base $AB$. Let $P$ be a point inside the triangle $ABC$ such that $\angle PAB = \angle PBC$. Denote by $M$ the midpoint of the segment $AB$. Show that $\angle APM + \angle BPC = 180^{\circ}$.

2017 Iran MO (3rd round), 1

Let $ABC$ be a triangle. Suppose that $X,Y$ are points in the plane such that $BX,CY$ are tangent to the circumcircle of $ABC$, $AB=BX,AC=CY$ and $X,Y,A$ are in the same side of $BC$. If $I$ be the incenter of $ABC$ prove that $\angle BAC+\angle XIY=180$.

2022 Korea Winter Program Practice Test, 6

Let $ABC$ be an acute triangle with incenter $I$ and circumcircle $\Omega$. The line passing $I$ and perpendicular to $AI$ meets $AB, AC$ at $D, E$, respectively. $A$-excircle of $\triangle{ABC}$ meets $BC$ at $T$. $AT$ meets $\Omega$ at $P$. The line passing $P$ and parallel to $BC$ meets $\Omega$ at $Q$. The intersection of $QI$ and $AT$ is $K$. Prove that $Q,D,K,E$ are concyclic.

2016 Hanoi Open Mathematics Competitions, 11

Let $I$ be the incenter of triangle $ABC$ and $\omega$ be its circumcircle. Let the line $AI$ intersect $\omega$ at point $D \ne A$. Let $F$ and $E$ be points on side $BC$ and arc $BDC$ respectively such that $\angle BAF = \angle CAE < \frac12 \angle BAC$ . Let $X$ be the second point of intersection of line $EI$ with $\omega$ and $T$ be the point of intersection of segment $DX$ with line $AF$ . Prove that $TF \cdot AD = ID \cdot AT$ .

2012 Centers of Excellency of Suceava, 4

Let $ O $ be the circumcenter of a triangle $ ABC $ with $ \angle BAC=60^{\circ } $ whose incenter is denoted by $ I. $ Let $ B_1,C_1 $ be the intersection of $ BI,CI $ with the circumcircle of $ ABC, $ respectively. Denote by $ O_1,O_2 $ the circumcenters of $ BIC_1,CIB_1, $ respectively. Show that $ O_1,I,O,O_2 $ are collinear. [i]Cătălin Țigăeru[/i]

1998 IMO Shortlist, 1

A convex quadrilateral $ABCD$ has perpendicular diagonals. The perpendicular bisectors of the sides $AB$ and $CD$ meet at a unique point $P$ inside $ABCD$. Prove that the quadrilateral $ABCD$ is cyclic if and only if triangles $ABP$ and $CDP$ have equal areas.

2010 ELMO Problems, 3

Let $ABC$ be a triangle with circumcircle $\omega$, incenter $I$, and $A$-excenter $I_A$. Let the incircle and the $A$-excircle hit $BC$ at $D$ and $E$, respectively, and let $M$ be the midpoint of arc $BC$ without $A$. Consider the circle tangent to $BC$ at $D$ and arc $BAC$ at $T$. If $TI$ intersects $\omega$ again at $S$, prove that $SI_A$ and $ME$ meet on $\omega$. [i]Amol Aggarwal.[/i]

2013 ELMO Shortlist, 8

Let $ABC$ be a triangle, and let $D$, $A$, $B$, $E$ be points on line $AB$, in that order, such that $AC=AD$ and $BE=BC$. Let $\omega_1, \omega_2$ be the circumcircles of $\triangle ABC$ and $\triangle CDE$, respectively, which meet at a point $F \neq C$. If the tangent to $\omega_2$ at $F$ cuts $\omega_1$ again at $G$, and the foot of the altitude from $G$ to $FC$ is $H$, prove that $\angle AGH=\angle BGH$. [i]Proposed by David Stoner[/i]

2013 Cono Sur Olympiad, 2

In a triangle $ABC$, let $M$ be the midpoint of $BC$ and $I$ the incenter of $ABC$. If $IM$ = $IA$, find the least possible measure of $\angle{AIM}$.

2012 Iran Team Selection Test, 2

Points $A$ and $B$ are on a circle $\omega$ with center $O$ such that $\tfrac{\pi}{3}< \angle AOB <\tfrac{2\pi}{3}$. Let $C$ be the circumcenter of the triangle $AOB$. Let $l$ be a line passing through $C$ such that the angle between $l$ and the segment $OC$ is $\tfrac{\pi}{3}$. $l$ cuts tangents in $A$ and $B$ to $\omega$ in $M$ and $N$ respectively. Suppose circumcircles of triangles $CAM$ and $CBN$, cut $\omega$ again in $Q$ and $R$ respectively and theirselves in $P$ (other than $C$). Prove that $OP\perp QR$. [i]Proposed by Mehdi E'tesami Fard, Ali Khezeli[/i]

2008 Korea - Final Round, 5

Quadrilateral $ABCD$ is inscribed in a circle $O$. Let $AB\cap CD=E$ and $P\in BC, EP\perp BC$, $R\in AD, ER\perp AD$, $EP\cap AD=Q, ER\cap BC=S$ Let $K$ be the midpoint of $QS$ Prove that $E, K, O$ are collinear.

2021 239 Open Mathematical Olympiad, 2

A triangle $ABC$ with an obtuse angle at the vertex $C$ is inscribed in a circle with a center at point $O$. Circumcircle of triangle $AOB$ centered at point $P$ intersects line $AC$ at points $A$ and $A_1$, line $BC$ at points $B$ and $B_1$, and the perpendicular bisector of the segment $PC$ at points $D$ and $E$. Prove that points $D$ and $E$ together with the centers of the circumscribed circles of triangles $A_1OC$ and $B_1OC$ lie on one circle.

2013 Romanian Master of Mathematics, 3

Let $ABCD$ be a quadrilateral inscribed in a circle $\omega$. The lines $AB$ and $CD$ meet at $P$, the lines $AD$ and $BC$ meet at $Q$, and the diagonals $AC$ and $BD$ meet at $R$. Let $M$ be the midpoint of the segment $PQ$, and let $K$ be the common point of the segment $MR$ and the circle $\omega$. Prove that the circumcircle of the triangle $KPQ$ and $\omega$ are tangent to one another.