This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2002 Iran MO (2nd round), 3

In a convex quadrilateral $ABCD$ with $\angle ABC = \angle ADC = 135^\circ$, points $M$ and $N$ are taken on the rays $AB$ and $AD$ respectively such that $\angle MCD = \angle NCB = 90^\circ$. The circumcircles of triangles $AMN$ and $ABD$ intersect at $A$ and $K$. Prove that $AK \perp KC.$

2021 IMO Shortlist, G8

Let $ABC$ be a triangle with circumcircle $\omega$ and let $\Omega_A$ be the $A$-excircle. Let $X$ and $Y$ be the intersection points of $\omega$ and $\Omega_A$. Let $P$ and $Q$ be the projections of $A$ onto the tangent lines to $\Omega_A$ at $X$ and $Y$ respectively. The tangent line at $P$ to the circumcircle of the triangle $APX$ intersects the tangent line at $Q$ to the circumcircle of the triangle $AQY$ at a point $R$. Prove that $\overline{AR} \perp \overline{BC}$.

2010 Contests, 3

Let $h_a, h_b, h_c$ be the lengths of the altitudes of a triangle $ABC$ from $A, B, C$ respectively. Let $P$ be any point inside the triangle. Show that \[\frac{PA}{h_b+h_c} + \frac{PB}{h_a+h_c} + \frac{PC}{h_a+h_b} \ge 1.\]

2009 Romanian Master of Mathematics, 3

Given four points $ A_1, A_2, A_3, A_4$ in the plane, no three collinear, such that \[ A_1A_2 \cdot A_3 A_4 \equal{} A_1 A_3 \cdot A_2 A_4 \equal{} A_1 A_4 \cdot A_2 A_3, \] denote by $ O_i$ the circumcenter of $ \triangle A_j A_k A_l$ with $ \{i,j,k,l\} \equal{} \{1,2,3,4\}.$ Assuming $ \forall i A_i \neq O_i ,$ prove that the four lines $ A_iO_i$ are concurrent or parallel. [i]Nikolai Ivanov Beluhov, Bulgaria[/i]

2021 Harvard-MIT Mathematics Tournament., 6

In triangle $ABC$, let $M$ be the midpoint of $BC$, $H$ be the orthocenter, and $O$ be the circumcenter. Let $N$ be the reflection of $M$ over $H$. Suppose that $OA = ON = 11$ and $OH = 7.$ Compute $BC^2$.

2014 Iran Team Selection Test, 2

Point $D$ is an arbitary point on side $BC$ of triangle $ABC$. $I$,$I_1$ and$I_2$ are the incenters of triangles $ABC$,$ABD$ and $ACD$ respectively. $M\not=A$ and $N\not=A$ are the intersections of circumcircle of triangle $ABC$ and circumcircles of triangles $IAI_1$ and $IAI_2$ respectively. Prove that regardless of point $D$, line $MN$ goes through a fixed point.

2001 Taiwan National Olympiad, 4

Let $\Gamma$ be the circumcircle of a fixed triangle $ABC$, and let $M$ and $N$ be the midpoints of the arcs $BC$ and $CA$, respectively. For any point $X$ on the arc $AB$, let $O_1$ and $O_2$ be the incenters of $\vartriangle XAC$ and $\vartriangle XBC$, and let the circumcircle of $\vartriangle XO_1O_2$ intersect $\Gamma$ at $X$ and $Q$. Prove that triangles $QNO_1$ and $QMO_2$ are similar, and find all possible locations of point $Q$.

2004 China Western Mathematical Olympiad, 3

Let $\ell$ be the perimeter of an acute-angled triangle $ABC$ which is not an equilateral triangle. Let $P$ be a variable points inside the triangle $ABC$, and let $D,E,F$ be the projections of $P$ on the sides $BC,CA,AB$ respectively. Prove that \[ 2(AF+BD+CE ) = \ell \] if and only if $P$ is collinear with the incenter and the circumcenter of the triangle $ABC$.

2020 Iran Team Selection Test, 2

Let $O$ be the circumcenter of the triangle $ABC$. Points $D,E$ are on sides $AC,AB$ and points $P,Q,R,S$ are given in plane such that $P,C$ and $R,C$ are on different sides of $AB$ and pints $Q,B$ and $S,B$ are on different sides of $AC$ such that $R,S$ lie on circumcircle of $DAP,EAQ$ and $\triangle BCE \sim \triangle ADQ , \triangle CBD \sim \triangle AEP$(In that order), $\angle ARE=\angle ASD=\angle BAC$, If $RS\| PQ$ prove that $RE ,DS$ are concurrent on $AO$. [i]Proposed by Alireza Dadgarnia[/i]

2005 Korea National Olympiad, 2

For triangle $ABC$, $P$ and $Q$ satisfy $\angle BPA + \angle AQC=90^{\circ}$. It is provided that the vertices of the triangle $BAP$ and $ACQ$ are ordered counterclockwise(or clockwise). Let the intersection of the circumcircles of the two triangles be $N$ ($A \neq N$, however if $A$ is the only intersection $A=N$), and the midpoint of segment $BC$ be $M$. Show that the length of $MN$ does not depend on $P$ and $Q$.

2015 Poland - Second Round, 3

Let $ABC$ be a triangle. Let $K$ be a midpoint of $BC$ and $M$ be a point on the segment $AB$. $L=KM \cap AC$ and $C$ lies on the segment $AC$ between $A$ and $L$. Let $N$ be a midpoint of $ML$. $AN$ cuts circumcircle of $\Delta ABC$ in $S$ and $S \neq N$. Prove that circumcircle of $\Delta KSN$ is tangent to $BC$.

May Olympiad L1 - geometry, 2008.4

Let $ABF$ be a right-angled triangle with $\angle AFB = 90$, a square $ABCD$ is externally to the triangle. If $FA = 6$, $FB = 8$ and $E$ is the circumcenter of the square $ABCD$, determine the value of $EF$

2011 Saudi Arabia BMO TST, 3

In an acute triangle $ABC$ the angle bisector $AL$, $L \in BC$, intersects its circumcircle at $N$. Let $K$ and $M$ be the projections of $L$ onto sides $AB$ and $AC$. Prove that triangle $ABC$ and quadrilateral $A K N M$ have equal areas.

2006 IMO Shortlist, 5

In triangle $ABC$, let $J$ be the center of the excircle tangent to side $BC$ at $A_{1}$ and to the extensions of the sides $AC$ and $AB$ at $B_{1}$ and $C_{1}$ respectively. Suppose that the lines $A_{1}B_{1}$ and $AB$ are perpendicular and intersect at $D$. Let $E$ be the foot of the perpendicular from $C_{1}$ to line $DJ$. Determine the angles $\angle{BEA_{1}}$ and $\angle{AEB_{1}}$. [i]Proposed by Dimitris Kontogiannis, Greece[/i]

2010 India IMO Training Camp, 7

Let $ABCD$ be a cyclic quadrilaterla and let $E$ be the point of intersection of its diagonals $AC$ and $BD$. Suppose $AD$ and $BC$ meet in $F$. Let the midpoints of $AB$ and $CD$ be $G$ and $H$ respectively. If $\Gamma $ is the circumcircle of triangle $EGH$, prove that $FE$ is tangent to $\Gamma $.

2003 All-Russian Olympiad, 2

The diagonals of a cyclic quadrilateral $ABCD$ meet at $O$. Let $S_1, S_2$ be the circumcircles of triangles $ABO$ and $CDO$ respectively, and $O,K$ their intersection points. The lines through $O$ parallel to $AB$ and $CD$ meet $S_1$ and $S_2$ again at $L$ and $M$, respectively. Points $P$ and $Q$ on segments $OL$ and $OM$ respectively are taken such that $OP : PL = MQ : QO$. Prove that $O,K, P,Q$ lie on a circle.

2005 Iran MO (2nd round), 2

In triangle $ABC$, $\angle A=60^{\circ}$. The point $D$ changes on the segment $BC$. Let $O_1,O_2$ be the circumcenters of the triangles $\Delta ABD,\Delta ACD$, respectively. Let $M$ be the meet point of $BO_1,CO_2$ and let $N$ be the circumcenter of $\Delta DO_1O_2$. Prove that, by changing $D$ on $BC$, the line $MN$ passes through a constant point.

2017 Pan-African Shortlist, G?

Let $ABC$ be a triangle with $H$ its orthocenter. The circle with diameter $[AC]$ cuts the circumcircle of triangle $ABH$ at $K$. Prove that the point of intersection of the lines $CK$ and $BH$ is the midpoint of the segment $[BH]$

2013 India IMO Training Camp, 2

Let $ABCD$ by a cyclic quadrilateral with circumcenter $O$. Let $P$ be the point of intersection of the diagonals $AC$ and $BD$, and $K, L, M, N$ the circumcenters of triangles $AOP, BOP$, $COP, DOP$, respectively. Prove that $KL = MN$.

2001 Croatia Team Selection Test, 2

Circles $k_1$ and $k_2$ intersect at $P$ and $Q$, and $A$ and $B$ are the tangency points of their common tangent that is closer to $P$ (where $A$ is on $k_1$ and $B$ on $k_2$). The tangent to $k_1$ at $P$ intersects $k_2$ again at $C$. The lines $AP$ and $BC$ meet at $R$. Show that the lines $BP$ and $BC$ are tangent to the circumcircle of triangle $PQR$.

1992 Turkey Team Selection Test, 2

The line passing through $B$ is perpendicular to the side $AC$ at $E$. This line meets the circumcircle of $\triangle ABC$ at $D$. The foot of the perpendicular from $D$ to the side $BC$ is $F$. If $O$ is the center of the circumcircle of $\triangle ABC$, prove that $BO$ is perpendicular to $EF$.

2012 JBMO ShortLists, 2

Let $ABC$ be an isosceles triangle with $AB=AC$ . Let also $\omega$ be a circle of center $K$ tangent to the line $AC$ at $C$ which intersects the segment $BC$ again at $H$ . Prove that $HK \bot AB $.

2011 All-Russian Olympiad Regional Round, 9.6

Initially, there are three different points on the plane. Every minute, three points are chosen, for example $A$, $B$ and $C$, and a new point $D$ is generated which is symmetric to $A$ with respect to the perpendicular bisector of line segment $BC$. 24 hours later, it turns out that among all the points that were generated, there exist three collinear points. Prove that the three initial points were also collinear. (Author: V. Shmarov)

2016 Germany National Olympiad (4th Round), 3

Let $I_a$ be the $A$-excenter of a scalene triangle $ABC$. And let $M$ be the point symmetric to $I_a$ about line $BC$. Prove that line $AM$ is parallel to the line through the circumcenter and the orthocenter of triangle $I_aCB$.

1989 IMO Longlists, 14

For a triangle $ ABC,$ let $ k$ be its circumcircle with radius $ r.$ The bisectors of the inner angles $ A, B,$ and $ C$ of the triangle intersect respectively the circle $ k$ again at points $ A', B',$ and $ C'.$ Prove the inequality \[ 16Q^3 \geq 27 r^4 P,\] where $ Q$ and $ P$ are the areas of the triangles $ A'B'C'$ and $ABC$ respectively.