This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2020 China Girls Math Olympiad, 7

Let $O$ be the circumcenter of triangle $\triangle ABC$, where $\angle BAC=120^{\circ}$. The tangent at $A$ to $(ABC)$ meets the tangents at $B,C$ at $(ABC)$ at points $P,Q$ respectively. Let $H,I$ be the orthocenter and incenter of $\triangle OPQ$ respectively. Define $M,N$ as the midpoints of arc $\overarc{BAC}$ and $OI$ respectively, and let $MN$ meet $(ABC)$ again at $D$. Prove that $AD$ is perpendicular to $HI$.

2012 Indonesia MO, 4

Given a triangle $ABC$, let the bisector of $\angle BAC$ meets the side $BC$ and circumcircle of triangle $ABC$ at $D$ and $E$, respectively. Let $M$ and $N$ be the midpoints of $BD$ and $CE$, respectively. Circumcircle of triangle $ABD$ meets $AN$ at $Q$. Circle passing through $A$ that is tangent to $BC$ at $D$ meets line $AM$ and side $AC$ respectively at $P$ and $R$. Show that the four points $B,P,Q,R$ lie on the same line. [i]Proposer: Fajar Yuliawan[/i]

2010 Greece National Olympiad, 3

A triangle $ ABC$ is inscribed in a circle $ C(O,R)$ and has incenter $ I$. Lines $ AI,BI,CI$ meet the circumcircle $ (O)$ of triangle $ ABC$ at points $ D,E,F$ respectively. The circles with diameter $ ID,IE,IF$ meet the sides $ BC,CA, AB$ at pairs of points $ (A_1,A_2), (B_1, B_2), (C_1, C_2)$ respectively. Prove that the six points $ A_1,A_2, B_1, B_2, C_1, C_2$ are concyclic. Babis

2020 Regional Olympiad of Mexico Southeast, 5

Let $ABC$ an acute triangle with $\angle BAC\geq 60^\circ$ and $\Gamma$ it´s circumcircule. Let $P$ the intersection of the tangents to $\Gamma$ from $B$ and $C$. Let $\Omega$ the circumcircle of the triangle $BPC$. The bisector of $\angle BAC$ intersect $\Gamma$ again in $E$ and $\Omega$ in $D$, in the way that $E$ is between $A$ and $D$. Prove that $\frac{AE}{ED}\leq 2$ and determine when equality holds.

2003 Purple Comet Problems, 22

In $\triangle ABC$, max $\{\angle A, \angle B \} = \angle C + 30^{\circ}$ and $\frac{R}{r} = \sqrt{3} + 1$, where $R$ is the radius of the circumcircle and $r$ is the radius of the incircle. Find $\angle C$ in degrees.

Indonesia MO Shortlist - geometry, g6

Given an $ABC$ acute triangle with $O$ the center of the circumscribed circle. Suppose that $\omega$ is a circle that is tangent to the line $AO$ at point $A$ and also tangent to the line $BC$. Prove that $\omega$ is also tangent to the circumcircle of the triangle $BOC$.

2017 Taiwan TST Round 3, 2

$\triangle ABC$ satisfies $\angle A=60^{\circ}$. Call its circumcenter and orthocenter $O, H$, respectively. Let $M$ be a point on the segment $BH$, then choose a point $N$ on the line $CH$ such that $H$ lies between $C, N$, and $\overline{BM}=\overline{CN}$. Find all possible value of \[\frac{\overline{MH}+\overline{NH}}{\overline{OH}}\]

2019 Bulgaria EGMO TST, 1

Determine the length of $BC$ in an acute triangle $ABC$ with $\angle ABC = 45^{\circ}$, $OG = 1$ and $OG \parallel BC$. (As usual $O$ is the circumcenter and $G$ is the centroid.)

1998 All-Russian Olympiad, 2

Let $ABC$ be a triangle with circumcircle $w$. Let $D$ be the midpoint of arc $BC$ that contains $A$. Define $E$ and $F$ similarly. Let the incircle of $ABC$ touches $BC,CA,AB$ at $K,L,M$ respectively. Prove that $DK,EL,FM$ are concurrent.

2014 Moldova Team Selection Test, 3

Let $ABCD$ be a cyclic quadrilateral. The bisectors of angles $BAD$ and $BCD$ intersect in point $K$ such that $K \in BD$. Let $M$ be the midpoint of $BD$. A line passing through point $C$ and parallel to $AD$ intersects $AM$ in point $P$. Prove that triangle $\triangle DPC$ is isosceles.

2013 Bosnia Herzegovina Team Selection Test, 6

In triangle $ABC$, $I$ is the incenter. We have chosen points $P,Q,R$ on segments $IA,IB,IC$ respectively such that $IP\cdot IA=IQ \cdot IB=IR\cdot IC$. Prove that the points $I$ and $O$ belong to Euler line of triangle $PQR$ where $O$ is circumcenter of $ABC$.

2017 Iran Team Selection Test, 5

In triangle $ABC$, arbitrary points $P,Q$ lie on side $BC$ such that $BP=CQ$ and $P$ lies between $B,Q$.The circumcircle of triangle $APQ$ intersects sides $AB,AC$ at $E,F$ respectively.The point $T$ is the intersection of $EP,FQ$.Two lines passing through the midpoint of $BC$ and parallel to $AB$ and $AC$, intersect $EP$ and $FQ$ at points $X,Y$ respectively. Prove that the circumcircle of triangle $TXY$ and triangle $APQ$ are tangent to each other. [i]Proposed by Iman Maghsoudi[/i]

2000 USAMO, 5

Let $A_1A_2A_3$ be a triangle and let $\omega_1$ be a circle in its plane passing through $A_1$ and $A_2.$ Suppose there exist circles $\omega_2, \omega_3, \dots, \omega_7$ such that for $k = 2, 3, \dots, 7,$ $\omega_k$ is externally tangent to $\omega_{k-1}$ and passes through $A_k$ and $A_{k+1},$ where $A_{n+3} = A_{n}$ for all $n \ge 1$. Prove that $\omega_7 = \omega_1.$

1990 National High School Mathematics League, 1

Quadrilateral $ABCD$ is inscribed on circle $O$. $AC\cap BD=P$. Circumcenters of $\triangle ABP,\triangle BCP,\triangle CDP,\triangle DAP$ are $O_1,O_2,O_3,O_4$. Prove that $OP,O_1O_3,O_2O_4$ share one point.

2014 Middle European Mathematical Olympiad, 5

Let $ABC$ be a triangle with $AB < AC$. Its incircle with centre $I$ touches the sides $BC, CA,$ and $AB$ in the points $D, E,$ and $F$ respectively. The angle bisector $AI$ intersects the lines $DE$ and $DF$ in the points $X$ and $Y$ respectively. Let $Z$ be the foot of the altitude through $A$ with respect to $BC$. Prove that $D$ is the incentre of the triangle $XYZ$.

2021 Iran Team Selection Test, 5

Point $X$ is chosen inside the non trapezoid quadrilateral $ABCD$ such that $\angle AXD +\angle BXC=180$. Suppose the angle bisector of $\angle ABX$ meets the $D$-altitude of triangle $ADX$ in $K$, and the angle bisector of $\angle DCX$ meets the $A$-altitude of triangle $ADX$ in $L$.We know $BK \perp CX$ and $CL \perp BX$. If the circumcenter of $ADX$ is on the line $KL$ prove that $KL \perp AD$. Proposed by [i]Alireza Dadgarnia[/i]

2019 AIME Problems, 15

In acute triangle $ABC$ points $P$ and $Q$ are the feet of the perpendiculars from $C$ to $\overline{AB}$ and from $B$ to $\overline{AC}$, respectively. Line $PQ$ intersects the circumcircle of $\triangle ABC$ in two distinct points, $X$ and $Y$. Suppose $XP=10$, $PQ=25$, and $QY=15$. The value of $AB\cdot AC$ can be written in the form $m\sqrt n$ where $m$ and $n$ are positive integers, and $n$ is not divisible by the square of any prime. Find $m+n$.

2012 China Team Selection Test, 1

Given two circles ${\omega _1},{\omega _2}$, $S$ denotes all $\Delta ABC$ satisfies that ${\omega _1}$ is the circumcircle of $\Delta ABC$, ${\omega _2}$ is the $A$- excircle of $\Delta ABC$ , ${\omega _2}$ touches $BC,CA,AB$ at $D,E,F$. $S$ is not empty, prove that the centroid of $\Delta DEF$ is a fixed point.

2013 Canadian Mathematical Olympiad Qualification Repechage, 8

Let $\triangle ABC$ be an acute-angled triangle with orthocentre $H$ and circumcentre $O$. Let $R$ be the radius of the circumcircle. \begin{align*} \text{Let }\mathit{A'}\text{ be the point on }\mathit{AO}\text{ (extended if necessary) for which }\mathit{HA'}\perp\mathit{AO}. \\ \text{Let }\mathit{B'}\text{ be the point on }\mathit{BO}\text{ (extended if necessary) for which }\mathit{HB'}\perp\mathit{BO}. \\ \text{Let }\mathit{C'}\text{ be the point on }\mathit{CO}\text{ (extended if necessary) for which }\mathit{HC'}\perp\mathit{CO}.\end{align*} Prove that $HA'+HB'+HC'<2R$ (Note: The orthocentre of a triangle is the intersection of the three altitudes of the triangle. The circumcircle of a triangle is the circle passing through the triangle’s three vertices. The circummcentre is the centre of the circumcircle.)

2001 Brazil Team Selection Test, Problem 4

Let $ABC$ be a triangle with circumcenter $O$. Let $P$ and $Q$ be points on the segments $AB$ and $AC$, respectively, such that $BP : PQ : QC = AC : CB : BA$. Prove that the points $A$, $P$, $Q$ and $O$ lie on one circle. [i]Alternative formulation.[/i] Let $O$ be the center of the circumcircle of a triangle $ABC$. If $P$ and $Q$ are points on the sides $AB$ and $AC$, respectively, satisfying $\frac{BP}{PQ}=\frac{CA}{BC}$ and $\frac{CQ}{PQ}=\frac{AB}{BC}$, then show that the points $A$, $P$, $Q$ and $O$ lie on one circle.

Cono Sur Shortlist - geometry, 2005.G4.2

Let $ABC$ be an acute-angled triangle and let $AN$, $BM$ and $CP$ the altitudes with respect to the sides $BC$, $CA$ and $AB$, respectively. Let $R$, $S$ be the pojections of $N$ on the sides $AB$, $CA$, respectively, and let $Q$, $W$ be the projections of $N$ on the altitudes $BM$ and $CP$, respectively. (a) Show that $R$, $Q$, $W$, $S$ are collinear. (b) Show that $MP=RS-QW$.

2020 Yasinsky Geometry Olympiad, 6

In an isosceles triangle $ABC, I$ is the center of the inscribed circle, $M_1$ is the midpoint of the side $BC, K_2, K_3$ are the points of contact of the inscribed circle of the triangle with segments $AC$ and $AB$, respectively. The point $P$ lies on the circumcircle of the triangle $BCI$, and the angle $M_1PI$ is right. Prove that the lines $BC, PI, K_2K_3$ intersect at one point. (Mikhail Plotnikov)

1997 APMO, 3

Let $ABC$ be a triangle inscribed in a circle and let \[ l_a = \frac{m_a}{M_a} \ , \ \ l_b = \frac{m_b}{M_b} \ , \ \ l_c = \frac{m_c}{M_c} \ , \] where $m_a$,$m_b$, $m_c$ are the lengths of the angle bisectors (internal to the triangle) and $M_a$, $M_b$, $M_c$ are the lengths of the angle bisectors extended until they meet the circle. Prove that \[ \frac{l_a}{\sin^2 A} + \frac{l_b}{\sin^2 B} + \frac{l_c}{\sin^2 C} \geq 3 \] and that equality holds iff $ABC$ is an equilateral triangle.

1989 IMO Longlists, 48

A bicentric quadrilateral is one that is both inscribable in and circumscribable about a circle, i.e. both the incircle and circumcircle exists. Show that for such a quadrilateral, the centers of the two associated circles are collinear with the point of intersection of the diagonals.

2022 Centroamerican and Caribbean Math Olympiad, 3

Let $ABC$ an acutangle triangle with orthocenter $H$ and circumcenter $O$. Let $D$ the intersection of $AO$ and $BH$. Let $P$ be the point on $AB$ such that $PH=PD$. Prove that the points $B, D, O$ and $P$ lie on a circle.