Found problems: 3882
2019 Sharygin Geometry Olympiad, 5
Let $AA_1, BB_1, CC_1$ be the altitudes of triangle $ABC$, and $A0, C0$ be the common points of the circumcircle of triangle $A_1BC_1$ with the lines $A_1B_1$ and $C_1B_1$ respectively. Prove that $AA_0$ and $CC_0$ meet on the median of ABC or are parallel to it
Durer Math Competition CD Finals - geometry, 2013.D3
The circle circumscribed to the triangle $ABC$ is $k$. The altitude $AT$ intersects circle $k$ at $P$. The perpendicular from $P$ on line $AB$ intersects is at $R$. Prove that line $TR$ is parallel to the tangent of the circle $k$ at point $A$.
2010 Balkan MO Shortlist, G7
A triangle $ABC$ is given. Let $M$ be the midpoint of the side $AC$ of the triangle and $Z$ the image of point $B$ along the line $BM$. The circle with center $M$ and radius $MB$ intersects the lines $BA$ and $BC$ at the points $E$ and $G$ respectively. Let $H$ be the point of intersection of $EG$ with the line $AC$, and $K$ the point of intersection of $HZ$ with the line $EB$. The perpendicular from point $K$ to the line $BH$ intersects the lines $BZ$ and $BH$ at the points $L$ and $N$, respectively.
If $P$ is the second point of intersection of the circumscribed circles of the triangles $KZL$ and $BLN$, prove that, the lines $BZ, KN$ and $HP$ intersect at a common point.
2016 CentroAmerican, 6
Let $\triangle ABC$ be triangle with incenter $I$ and circumcircle $\Gamma$. Let $M=BI\cap \Gamma$ and $N=CI\cap \Gamma$, the line parallel to $MN$ through $I$ cuts $AB$, $AC$ in $P$ and $Q$. Prove that the circumradius of $\odot (BNP)$ and $\odot (CMQ)$ are equal.
2013 Stanford Mathematics Tournament, 1
In triangle $ABC$, $AC=7$. $D$ lies on $AB$ such that $AD=BD=CD=5$. Find $BC$.
2008 Hong Kong TST, 4
Two circles $ C_1,C_2$ with different radii are given in the plane, they touch each other externally at $ T$. Consider any points $ A\in C_1$ and $ B\in C_2$, both different from $ T$, such that $ \angle ATB \equal{} 90^{\circ}$.
(a) Show that all such lines $ AB$ are concurrent.
(b) Find the locus of midpoints of all such segments $ AB$.
2014 EGMO, 2
Let $D$ and $E$ be points in the interiors of sides $AB$ and $AC$, respectively, of a triangle $ABC$, such that $DB = BC = CE$. Let the lines $CD$ and $BE$ meet at $F$. Prove that the incentre $I$ of triangle $ABC$, the orthocentre $H$ of triangle $DEF$ and the midpoint $M$ of the arc $BAC$ of the circumcircle of triangle $ABC$ are collinear.
2014 European Mathematical Cup, 3
Let $ABCD$ be a cyclic quadrilateral in which internal angle bisectors $\angle ABC$ and $\angle ADC$ intersect on diagonal $AC$. Let $M$ be the midpoint of $AC$. Line parallel to $BC$ which passes through $D$ cuts $BM$ at $E$ and circle $ABCD$ in $F$ ($F \neq D$ ). Prove that $BCEF$ is parallelogram
[i]Proposed by Steve Dinh[/i]
2002 Czech and Slovak Olympiad III A, 2
Consider an arbitrary equilateral triangle $KLM$, whose vertices $K, L$ and $M$ lie on the sides $AB, BC$ and $CD$, respectively, of a given square $ABCD$. Find the locus of the midpoints of the sides $KL$ of all such triangles $KLM$.
1991 IMO Shortlist, 2
$ ABC$ is an acute-angled triangle. $ M$ is the midpoint of $ BC$ and $ P$ is the point on $ AM$ such that $ MB \equal{} MP$. $ H$ is the foot of the perpendicular from $ P$ to $ BC$. The lines through $ H$ perpendicular to $ PB$, $ PC$ meet $ AB, AC$ respectively at $ Q, R$. Show that $ BC$ is tangent to the circle through $ Q, H, R$ at $ H$.
[i]Original Formulation: [/i]
For an acute triangle $ ABC, M$ is the midpoint of the segment $ BC, P$ is a point on the segment $ AM$ such that $ PM \equal{} BM, H$ is the foot of the perpendicular line from $ P$ to $ BC, Q$ is the point of intersection of segment $ AB$ and the line passing through $ H$ that is perpendicular to $ PB,$ and finally, $ R$ is the point of intersection of the segment $ AC$ and the line passing through $ H$ that is perpendicular to $ PC.$ Show that the circumcircle of $ QHR$ is tangent to the side $ BC$ at point $ H.$
2006 QEDMO 3rd, 1
Peter is a pentacrat and spends his time drawing pentagrams.
With the abbreviation $\left|XYZ\right|$ for the area of an arbitrary triangle $XYZ$, he notes that any convex pentagon $ABCDE$ satisfies the equality
$\left|EAC\right|\cdot\left|EBD\right|=\left|EAB\right|\cdot\left|ECD\right|+\left|EBC\right|\cdot\left|EDA\right|$.
Guess what you are supposed to do and do it.
2008 IMAR Test, 3
Two circles $ \gamma_{1}$ and $ \gamma_{2}$ meet at points $ X$ and $ Y$. Consider the parallel through $ Y$ to the nearest common tangent of the circles. This parallel meets again $ \gamma_{1}$ and $ \gamma_{2}$ at $ A$, and $ B$ respectively. Let $ O$ be the center of the circle tangent to $ \gamma_{1},\gamma_{2}$ and the circle $ AXB$, situated outside $ \gamma_{1}$ and $ \gamma_{2}$ and inside the circle $ AXB.$ Prove that $ XO$ is the bisector line of the angle $ \angle{AXB}.$
[b]Radu Gologan[/b]
1998 National Olympiad First Round, 21
In an acute triangle $ ABC$, let $ D$ be a point on $ \left[AC\right]$ and $ E$ be a point on $ \left[AB\right]$ such that $ \angle ADB\equal{}\angle AEC\equal{}90{}^\circ$. If perimeter of triangle $ AED$ is 9, circumradius of $ AED$ is $ \frac{9}{5}$ and perimeter of triangle $ ABC$ is 15, then $ \left|BC\right|$ is
$\textbf{(A)}\ 5 \qquad\textbf{(B)}\ \frac{24}{5} \qquad\textbf{(C)}\ 6 \qquad\textbf{(D)}\ 8 \qquad\textbf{(E)}\ \frac{48}{5}$
2008 China Team Selection Test, 1
Let $P$ be an arbitrary point inside triangle $ABC$, denote by $A_{1}$ (different from $P$) the second intersection of line $AP$ with the circumcircle of triangle $PBC$ and define $B_{1},C_{1}$ similarly. Prove that $\left(1 \plus{} 2\cdot\frac {PA}{PA_{1}}\right)\left(1 \plus{} 2\cdot\frac {PB}{PB_{1}}\right)\left(1 \plus{} 2\cdot\frac {PC}{PC_{1}}\right)\geq 8$.
1989 China Team Selection Test, 4
Given triangle $ABC$, squares $ABEF, BCGH, CAIJ$ are constructed externally on side $AB, BC, CA$, respectively. Let $AH \cap BJ = P_1$, $BJ \cap CF = Q_1$, $CF \cap AH = R_1$, $AG \cap CE = P_2$, $BI \cap AG = Q_2$, $CE \cap BI = R_2$. Prove that triangle $P_1 Q_1 R_1$ is congruent to triangle $P_2 Q_2 R_2$.
2016 Latvia National Olympiad, 2
The bisectors of the angles $\sphericalangle CAB$ and $\sphericalangle BCA$ intersect the circumcircle of $ABC$ in $P$ and $Q$ respectively. These bisectors intersect each other in point $I$. Prove that $PQ \perp BI$.
2003 Vietnam Team Selection Test, 2
Given a triangle $ABC$. Let $O$ be the circumcenter of this triangle $ABC$. Let $H$, $K$, $L$ be the feet of the altitudes of triangle $ABC$ from the vertices $A$, $B$, $C$, respectively. Denote by $A_{0}$, $B_{0}$, $C_{0}$ the midpoints of these altitudes $AH$, $BK$, $CL$, respectively. The incircle of triangle $ABC$ has center $I$ and touches the sides $BC$, $CA$, $AB$ at the points $D$, $E$, $F$, respectively. Prove that the four lines $A_{0}D$, $B_{0}E$, $C_{0}F$ and $OI$ are concurrent. (When the point $O$ concides with $I$, we consider the line $OI$ as an arbitrary line passing through $O$.)
1966 IMO Longlists, 39
Consider a circle with center $O$ and radius $R,$ and let $A$ and $B$ be two points in the plane of this circle.
[b]a.)[/b] Draw a chord $CD$ of the circle such that $CD$ is parallel to $AB,$ and the point of the intersection $P$ of the lines $AC$ and $BD$ lies on the circle.
[b]b.)[/b] Show that generally, one gets two possible points $P$ ($P_{1}$ and $P_{2}$) satisfying the condition of the above problem, and compute the distance between these two points, if the lengths $OA=a,$ $OB=b$ and $AB=d$ are given.
2017 Princeton University Math Competition, A7
Let $ACDB$ be a cyclic quadrilateral with circumcenter $\omega$. Let $AC=5$, $CD=6$, and $DB=7$. Suppose that there exists a unique point $P$ on $\omega$ such that $\overline{PC}$ intersects $\overline{AB}$ at a point $P_1$ and $\overline{PD}$ intersects $\overline{AB}$ at a point $P_2$, such that $AP_1=3$ and $P_2B=4$. Let $Q$ be the unique point on $\omega$ such that $\overline{QC}$ intersects $\overline{AB}$ at a point $Q_1$, $\overline{QD}$ intersects $\overline{AB}$ at a point $Q_2$, $Q_1$ is closer to $B$ than $P_1$ is to $B$, and $P_2Q_2=2$. The length of $P_1Q_1$ can be written as $\frac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.
2005 USA Team Selection Test, 2
Let $A_{1}A_{2}A_{3}$ be an acute triangle, and let $O$ and $H$ be its circumcenter and orthocenter, respectively. For $1\leq i \leq 3$, points $P_{i}$ and $Q_{i}$ lie on lines $OA_{i}$ and $A_{i+1}A_{i+2}$ (where $A_{i+3}=A_{i}$), respectively, such that $OP_{i}HQ_{i}$ is a parallelogram. Prove that
\[\frac{OQ_{1}}{OP_{1}}+\frac{OQ_{2}}{OP_{2}}+\frac{OQ_{3}}{OP_{3}}\geq 3.\]
2021 Oral Moscow Geometry Olympiad, 5
Let $ABC$ be a triangle, $I$ and $O$ be its incenter and circumcenter respectively. $A'$ is symmetric to $O$ with respect to line $AI$. Points $B'$ and $C'$ are defined similarly. Prove that the nine-point centers of triangles $ABC$ and $A'B'C'$ coincide.
1995 Iran MO (2nd round), 3
In a quadrilateral $ABCD$ let $A', B', C'$ and $D'$ be the circumcenters of the triangles $BCD, CDA, DAB$ and $ABC$, respectively. Denote by $S(X, YZ)$ the plane which passes through the point $X$ and is perpendicular to the line $YZ.$ Prove that if $A', B', C'$ and $D'$ don't lie in a plane, then four planes $S(A, C'D'), S(B, A'D'), S(C, A'B')$ and $S(D, B'C')$ pass through a common point.
1992 Balkan MO, 3
Let $D$, $E$, $F$ be points on the sides $BC$, $CA$, $AB$ respectively of a triangle $ABC$ (distinct from the vertices). If the quadrilateral $AFDE$ is cyclic, prove that \[ \frac{ 4 \mathcal A[DEF] }{\mathcal A[ABC] } \leq \left( \frac{EF}{AD} \right)^2 . \]
[i]Greece[/i]
1998 Iran MO (3rd Round), 2
Let $ M$ and $ N$ be two points inside triangle $ ABC$ such that
\[ \angle MAB \equal{} \angle NAC\quad \mbox{and}\quad \angle MBA \equal{} \angle NBC.
\]
Prove that
\[ \frac {AM \cdot AN}{AB \cdot AC} \plus{} \frac {BM \cdot BN}{BA \cdot BC} \plus{} \frac {CM \cdot CN}{CA \cdot CB} \equal{} 1.
\]
2021 Latvia Baltic Way TST, P9
Pentagon $ABCDE$ with $CD\parallel BE$ is inscribed in circle $\omega$. Tangent to $\omega$ through $B$ intersects line $AC$ at $F$ in a way that $A$ lies between $C$ and $F$. Lines $BD$ and $AE$ intersect at $G$. Prove that $FG$ is tangent to the circumcircle of $\triangle ADG$.