This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2012 CentroAmerican, 2

Let $\gamma$ be the circumcircle of the acute triangle $ABC$. Let $P$ be the midpoint of the minor arc $BC$. The parallel to $AB$ through $P$ cuts $BC, AC$ and $\gamma$ at points $R,S$ and $T$, respectively. Let $K \equiv AP \cap BT$ and $L \equiv BS \cap AR$. Show that $KL$ passes through the midpoint of $AB$ if and only if $CS = PR$.

2005 Indonesia MO, 4

Let $ M$ be a point in triangle $ ABC$ such that $ \angle AMC\equal{}90^{\circ}$, $ \angle AMB\equal{}150^{\circ}$, $ \angle BMC\equal{}120^{\circ}$. The centers of circumcircles of triangles $ AMC,AMB,BMC$ are $ P,Q,R$, respectively. Prove that the area of $ \triangle PQR$ is greater than the area of $ \triangle ABC$.

2013 ELMO Shortlist, 1

Let $ABC$ be a triangle with incenter $I$. Let $U$, $V$ and $W$ be the intersections of the angle bisectors of angles $A$, $B$, and $C$ with the incircle, so that $V$ lies between $B$ and $I$, and similarly with $U$ and $W$. Let $X$, $Y$, and $Z$ be the points of tangency of the incircle of triangle $ABC$ with $BC$, $AC$, and $AB$, respectively. Let triangle $UVW$ be the [i]David Yang triangle[/i] of $ABC$ and let $XYZ$ be the [i]Scott Wu triangle[/i] of $ABC$. Prove that the David Yang and Scott Wu triangles of a triangle are congruent if and only if $ABC$ is equilateral. [i]Proposed by Owen Goff[/i]

2014 South East Mathematical Olympiad, 1

Let $ABC$ be a triangle with $AB<AC$ and let $M $ be the midpoint of $BC$. $MI$ ($I$ incenter) intersects $AB$ at $D$ and $CI$ intersects the circumcircle of $ABC$ at $E$. Prove that $\frac{ED }{ EI} = \frac{IB }{IC}$ [img]https://cdn.artofproblemsolving.com/attachments/0/5/4639d82d183247b875128a842a013ed7415fba.jpg[/img] [hide=.][url=http://artofproblemsolving.com/community/c6h602657p10667541]source[/url], translated by Antreas Hatzipolakis in fb, corrected by me in order to be compatible with it's figure[/hide]

Cono Sur Shortlist - geometry, 2003.G1

Let $O$ be the circumcenter of the isosceles triangle $ABC$ ($AB = AC$). Let $P$ be a point of the segment $AO$ and $Q$ the symmetric of $P$ with respect to the midpoint of $AB$. If $OQ$ cuts $AB$ at $K$ and the circle that passes through $A, K$ and $O$ cuts $AC$ in $L$, show that $\angle ALP = \angle CLO$.

2012 Czech-Polish-Slovak Match, 3

Let $ABCD$ be a cyclic quadrilateral with circumcircle $\omega$. Let $I, J$ and $K$ be the incentres of the triangles $ABC, ACD$ and $ABD$ respectively. Let $E$ be the midpoint of the arc $DB$ of circle $\omega$ containing the point $A$. The line $EK$ intersects again the circle $\omega$ at point $F$ $(F \neq E)$. Prove that the points $C, F, I, J$ lie on a circle.

2004 Germany Team Selection Test, 3

Let $ABC$ be a triangle with semiperimeter $s$ and inradius $r$. The semicircles with diameters $BC$, $CA$, $AB$ are drawn on the outside of the triangle $ABC$. The circle tangent to all of these three semicircles has radius $t$. Prove that \[\frac{s}{2}<t\le\frac{s}{2}+\left(1-\frac{\sqrt{3}}{2}\right)r. \] [i]Alternative formulation.[/i] In a triangle $ABC$, construct circles with diameters $BC$, $CA$, and $AB$, respectively. Construct a circle $w$ externally tangent to these three circles. Let the radius of this circle $w$ be $t$. Prove: $\frac{s}{2}<t\le\frac{s}{2}+\frac12\left(2-\sqrt3\right)r$, where $r$ is the inradius and $s$ is the semiperimeter of triangle $ABC$. [i]Proposed by Dirk Laurie, South Africa[/i]

2018 USA TSTST, 3

Let $ABC$ be an acute triangle with incenter $I$, circumcenter $O$, and circumcircle $\Gamma$. Let $M$ be the midpoint of $\overline{AB}$. Ray $AI$ meets $\overline{BC}$ at $D$. Denote by $\omega$ and $\gamma$ the circumcircles of $\triangle BIC$ and $\triangle BAD$, respectively. Line $MO$ meets $\omega$ at $X$ and $Y$, while line $CO$ meets $\omega$ at $C$ and $Q$. Assume that $Q$ lies inside $\triangle ABC$ and $\angle AQM = \angle ACB$. Consider the tangents to $\omega$ at $X$ and $Y$ and the tangents to $\gamma$ at $A$ and $D$. Given that $\angle BAC \neq 60^{\circ}$, prove that these four lines are concurrent on $\Gamma$. [i]Evan Chen and Yannick Yao[/i]

2013 Harvard-MIT Mathematics Tournament, 3

Let $ABC$ be a triangle with circumcenter $O$ such that $AC = 7$. Suppose that the circumcircle of $AOC$ is tangent to $BC$ at $C$ and intersects the line $AB$ at $A$ and $F$. Let $FO$ intersect $BC$ at $E$. Compute $BE$.

2015 Iran Team Selection Test, 2

In triangle $ABC$(with incenter $I$) let the line parallel to $BC$ from $A$ intersect circumcircle of $\triangle ABC$ at $A_1$ let $AI\cap BC=D$ and $E$ is tangency point of incircle with $BC$ let $ EA_1\cap \odot (\triangle ADE)=T$ prove that $AI=TI$.

2004 AMC 10, 24

In $ \triangle ABC$ we have $ AB \equal{} 7$, $ AC \equal{} 8$, and $ BC \equal{} 9$. Point $ D$ is on the circumscribed circle of the triangle so that $ \overline{AD}$ bisects $ \angle BAC$. What is the value of $ AD/CD$? $ \textbf{(A)}\ \frac{9}{8}\qquad \textbf{(B)}\ \frac{5}{3}\qquad \textbf{(C)}\ 2\qquad \textbf{(D)}\ \frac{17}{7}\qquad \textbf{(E)}\ \frac{5}{2}$

2009 USAMTS Problems, 5

Let $ABC$ be a triangle with $AB = 3, AC = 4,$ and $BC = 5$, let $P$ be a point on $BC$, and let $Q$ be the point (other than $A$) where the line through $A$ and $P$ intersects the circumcircle of $ABC$. Prove that \[PQ\le \frac{25}{4\sqrt{6}}.\]

1997 China National Olympiad, 1

Consider a cyclic quadrilateral $ABCD$. The extensions of its sides $AB,DC$ meet at the point $P$ and the extensions of its sides $AD,BC$ meet at the point $Q$. Suppose $\quad QE,QF$ are tangents to the circumcircle of quadrilateral $ABCD$ at $E,F$ respectively. Show that $P,E,F$ are collinear.

2017 Harvard-MIT Mathematics Tournament, 8

Let $ABC$ be a triangle with circumradius $R=17$ and inradius $r=7$. Find the maximum possible value of $\sin \frac{A}{2}$.

2016 Azerbaijan Team Selection Test, 1

Tangents from the point $A$ to the circle $\Gamma$ touche this circle at $C$ and $D$.Let $B$ be a point on $\Gamma$,different from $C$ and $D$. The circle $\omega$ that passes through points $A$ and $B$ intersect with lines $AC$ and $AD$ at $F$ and $E$,respectively.Prove that the circumcircles of triangles $ABC$ and $DEB$ are tangent if and only if the points $C,D,F$ and $E$ are cyclic.

2004 Mexico National Olympiad, 5

Let $\omega_1$ and $\omega_2$ be two circles such that the center $O$ of $\omega_2$ lies in $\omega_1$. Let $C$ and $D$ be the two intersection points of the circles. Let $A$ be a point on $\omega_1$ and let $B$ be a point on $\omega_2$ such that $AC$ is tangent to $\omega_2$ in C and BC is tangent to $\omega_1$ in $C$. The line segment $AB$ meets $\omega_2$ again in $E$ and also meets $\omega_1$ again in F. The line $CE$ meets $\omega_1$ again in $G$ and the line $CF$ meets the line $GD$ in $H$. Prove that the intersection point of $GO$ and $EH$ is the center of the circumcircle of the triangle $DEF$.

2013 Dutch IMO TST, 2

Let $P$ be the point of intersection of the diagonals of a convex quadrilateral $ABCD$.Let $X,Y,Z$ be points on the interior of $AB,BC,CD$ respectively such that $\frac{AX}{XB}=\frac{BY}{YC}=\frac{CZ}{ZD}=2$. Suppose that $XY$ is tangent to the circumcircle of $\triangle CYZ$ and that $Y Z$ is tangent to the circumcircle of $\triangle BXY$.Show that $\angle APD=\angle XYZ$.

2018 Thailand Mathematical Olympiad, 9

In $\vartriangle ABC$ the incircle is tangent to $AB$ at $D$. Let $P$ be a point on $BC$ different from $B$ and $C$, and let $K$ and $L$ be incenters of $\vartriangle ABP$ and $\vartriangle ACP$ respectively. Suppose that the circumcircle of $\vartriangle KP L$ cuts $AP$ again at $Q$. Prove that $AD = AQ$.

2000 Taiwan National Olympiad, 2

Let $ABC$ be a triangle in which $BC<AC$. Let $M$ be the mid-point of $AB$, $AP$ be the altitude from $A$ on $BC$, and $BQ$ be the altitude from $B$ on to $AC$. Suppose that $QP$ produced meets $AB$ (extended) at $T$. If $H$ is the orthocenter of $ABC$, prove that $TH$ is perpendicular to $CM$.

1991 IMO Shortlist, 3

Let $ S$ be any point on the circumscribed circle of $ PQR.$ Then the feet of the perpendiculars from S to the three sides of the triangle lie on the same straight line. Denote this line by $ l(S, PQR).$ Suppose that the hexagon $ ABCDEF$ is inscribed in a circle. Show that the four lines $ l(A,BDF),$ $ l(B,ACE),$ $ l(D,ABF),$ and $ l(E,ABC)$ intersect at one point if and only if $ CDEF$ is a rectangle.

2013 Online Math Open Problems, 22

In triangle $ABC$, $AB = 28$, $AC = 36$, and $BC = 32$. Let $D$ be the point on segment $BC$ satisfying $\angle BAD = \angle DAC$, and let $E$ be the unique point such that $DE \parallel AB$ and line $AE$ is tangent to the circumcircle of $ABC$. Find the length of segment $AE$. [i]Ray Li[/i]

1985 Iran MO (2nd round), 1

Inscribe in the triangle $ABC$ a triangle with minimum perimeter.

2013 NIMO Problems, 8

Let $ABCD$ be a convex quadrilateral with $\angle ABC = 120^{\circ}$ and $\angle BCD = 90^{\circ}$, and let $M$ and $N$ denote the midpoints of $\overline{BC}$ and $\overline{CD}$. Suppose there exists a point $P$ on the circumcircle of $\triangle CMN$ such that ray $MP$ bisects $\overline{AD}$ and ray $NP$ bisects $\overline{AB}$. If $AB + BC = 444$, $CD = 256$ and $BC = \frac mn$ for some relatively prime positive integers $m$ and $n$, compute $100m+n$. [i]Proposed by Michael Ren[/i]

2018 Tuymaada Olympiad, 3

A point $P$ on the side $AB$ of a triangle $ABC$ and points $S$ and $T$ on the sides $AC$ and $BC$ are such that $AP=AS$ and $BP=BT$. The circumcircle of $PST$ meets the sides $AB$ and $BC$ again at $Q$ and $R$, respectively. The lines $PS$ and $QR$ meet at $L$. Prove that the line $CL$ bisects the segment $PQ$. [i]Proposed by A. Antropov[/i]

2024 Centroamerican and Caribbean Math Olympiad, 4

Let $ABC$ be a triangle, $I$ its incenter, and $\Gamma$ its circumcircle. Let $D$ be the second point of intersection of $AI$ with $\Gamma$. The line parallel to $BC$ through $I$ intersects $AB$ and $AC$ at $P$ and $Q$, respectively. The lines $PD$ and $QD$ intersect $BC$ at $E$ and $F$, respectively. Prove that triangles $IEF$ and $ABC$ are similar.