This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2020 Thailand TSTST, 3

Let $ABC$ be an acute triangle and $\Gamma$ be its circumcircle. Line $\ell$ is tangent to $\Gamma$ at $A$ and let $D$ and $E$ be distinct points on $\ell$ such that $AD = AE$. Suppose that $B$ and $D$ lie on the same side of line $AC$. The circumcircle $\Omega_1$ of $\vartriangle ABD$ meets $AC$ again at $F$. The circumcircle $\Omega_2$ of $\vartriangle ACE$ meets $AB$ again at $G$. The common chord of $\Omega_1$ and $\Omega_2$ meets $\Gamma$ again at $H$. Let $K$ be the reflection of $H$ across line $BC$ and let $L$ be the intersection of $BF$ and $CG$. Prove that $A, K$ and $L$ are collinear.

2020 Estonia Team Selection Test, 2

Let $M$ be the midpoint of side BC of an acute-angled triangle $ABC$. Let $D$ and $E$ be the center of the excircle of triangle $AMB$ tangent to side $AB$ and the center of the excircle of triangle $AMC$ tangent to side $AC$, respectively. The circumscribed circle of triangle $ABD$ intersects line$ BC$ for the second time at point $F$, and the circumcircle of triangle $ACE$ is at point $G$. Prove that $| BF | = | CG|$.

2012 China Girls Math Olympiad, 5

As shown in the figure below, the in-circle of $ABC$ is tangent to sides $AB$ and $AC$ at $D$ and $E$ respectively, and $O$ is the circumcenter of $BCI$. Prove that $\angle ODB = \angle OEC$. [asy]import graph; size(5.55cm); pathpen=linewidth(0.7); pointpen=black; pen fp=fontsize(10); pointfontpen=fp; real xmin=-5.76,xmax=4.8,ymin=-3.69,ymax=3.71; pen zzttqq=rgb(0.6,0.2,0), wwwwqq=rgb(0.4,0.4,0), qqwuqq=rgb(0,0.39,0); pair A=(-2,2.5), B=(-3,-1.5), C=(2,-1.5), I=(-1.27,-0.15), D=(-2.58,0.18), O=(-0.5,-2.92); D(A--B--C--cycle,zzttqq); D(arc(D,0.25,-104.04,-56.12)--(-2.58,0.18)--cycle,qqwuqq); D(arc((-0.31,0.81),0.25,-92.92,-45)--(-0.31,0.81)--cycle,qqwuqq); D(A--B,zzttqq); D(B--C,zzttqq); D(C--A,zzttqq); D(CR(I,1.35),linewidth(1.2)+dotted+wwwwqq); D(CR(O,2.87),linetype("2 2")+blue); D(D--O); D((-0.31,0.81)--O); D(A); D(B); D(C); D(I); D(D); D((-0.31,0.81)); D(O); MP( "A", A, dir(110)); MP("B", B, dir(140)); D("C", C, dir(20)); D("D", D, dir(150)); D("E", (-0.31, 0.81), dir(60)); D("O", O, dir(290)); D("I", I, dir(100)); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); [/asy]

2018 Oral Moscow Geometry Olympiad, 3

On the extensions of sides $CA$ and $AB$ of triangle $ABC$ beyond points $A$ and $B$, respectively, the segments $AE = BC$ and $BF = AC$ are drawn. A circle is tangent to segment $BF$ at point $N$, side $BC$ and the extension of side $AC$ beyond point $C$. Point $M$ is the midpoint of segment $EF$. Prove that the line $MN$ is parallel to the bisector of angle $A$.

1990 Romania Team Selection Test, 5

Let $O$ be the circumcenter of an acute triangle $ABC$ and $R$ be its circumcenter. Consider the disks having $OA,OB,OC$ as diameters, and let $\Delta$ be the set of points in the plane belonging to at least two of the disks. Prove that the area of $\Delta$ is greater than $R^2/8$.

2010 Romania Team Selection Test, 2

Let $ABC$ be a triangle such that $AB \neq AC$. The internal bisector lines of the angles $ABC$ and $ACB$ meet the opposite sides of the triangle at points $B_0$ and $C_0$, respectively, and the circumcircle $ABC$ at points $B_1$ and $C_1$, respectively. Further, let $I$ be the incentre of the triangle $ABC$. Prove that the lines $B_0C_0$ and $B_1C_1$ meet at some point lying on the parallel through $I$ to the line $BC$. [i]Radu Gologan[/i]

1947 Moscow Mathematical Olympiad, 127

Point $O$ is the intersection point of the heights of an acute triangle $\vartriangle ABC$. Prove that the three circles which pass: a) through $O, A, B$, b) through $O, B, C$, and c) through $O, C, A$, are equal

2009 Ukraine Team Selection Test, 10

Let $ ABCD$ be a convex quadrilateral and let $ P$ and $ Q$ be points in $ ABCD$ such that $ PQDA$ and $ QPBC$ are cyclic quadrilaterals. Suppose that there exists a point $ E$ on the line segment $ PQ$ such that $ \angle PAE \equal{} \angle QDE$ and $ \angle PBE \equal{} \angle QCE$. Show that the quadrilateral $ ABCD$ is cyclic. [i]Proposed by John Cuya, Peru[/i]

2003 Iran MO (2nd round), 2

$\angle{A}$ is the least angle in $\Delta{ABC}$. Point $D$ is on the arc $BC$ from the circumcircle of $\Delta{ABC}$. The perpendicular bisectors of the segments $AB,AC$ intersect the line $AD$ at $M,N$, respectively. Point $T$ is the meet point of $BM,CN$. Suppose that $R$ is the radius of the circumcircle of $\Delta{ABC}$. Prove that: \[ BT+CT\leq{2R}. \]

2014 Iran Team Selection Test, 6

$I$ is the incenter of triangle $ABC$. perpendicular from $I$ to $AI$ meet $AB$ and $AC$ at ${B}'$ and ${C}'$ respectively . Suppose that ${B}''$ and ${C}''$ are points on half-line $BC$ and $CB$ such that $B{B}''=BA$ and $C{C}''=CA$. Suppose that the second intersection of circumcircles of $A{B}'{B}''$ and $A{C}'{C}''$ is $T$. Prove that the circumcenter of $AIT$ is on the $BC$.

2025 Philippine MO, P4

Let $ABC$ be a triangle with incenter $I$, and let $D$ be a point on side $BC$. Points $X$ and $Y$ are chosen on lines $BI$ and $CI$ respectively such that $DXIY$ is a parallelogram. Points $E$ and $F$ are chosen on side $BC$ such that $AX$ and $AY$ are the angle bisectors of angles $\angle BAE$ and $\angle CAF$ respectively. Let $\omega$ be the circle tangent to segment $EF$, the extension of $AE$ past $E$, and the extension of $AF$ past $F$. Prove that $\omega$ is tangent to the circumcircle of triangle $ABC$.

2010 International Zhautykov Olympiad, 2

In a cyclic quadrilateral $ABCD$ with $AB=AD$ points $M$,$N$ lie on the sides $BC$ and $CD$ respectively so that $MN=BM+DN$ . Lines $AM$ and $AN$ meet the circumcircle of $ABCD$ again at points $P$ and $Q$ respectively. Prove that the orthocenter of the triangle $APQ$ lies on the segment $MN$ .

2012 Online Math Open Problems, 27

Let $ABC$ be a triangle with circumcircle $\omega$. Let the bisector of $\angle ABC$ meet segment $AC$ at $D$ and circle $\omega$ at $M\ne B$. The circumcircle of $\triangle BDC$ meets line $AB$ at $E\ne B$, and $CE$ meets $\omega$ at $P\ne C$. The bisector of $\angle PMC$ meets segment $AC$ at $Q\ne C$. Given that $PQ = MC$, determine the degree measure of $\angle ABC$. [i]Ray Li.[/i]

2005 China Team Selection Test, 2

Let $\omega$ be the circumcircle of acute triangle $ABC$. Two tangents of $\omega$ from $B$ and $C$ intersect at $P$, $AP$ and $BC$ intersect at $D$. Point $E$, $F$ are on $AC$ and $AB$ such that $DE \parallel BA$ and $DF \parallel CA$. (1) Prove that $F,B,C,E$ are concyclic. (2) Denote $A_{1}$ the centre of the circle passing through $F,B,C,E$. $B_{1}$, $C_{1}$ are difined similarly. Prove that $AA_{1}$, $BB_{1}$, $CC_{1}$ are concurrent.

2018 Peru IMO TST, 7

Let $ABC$ be, with $AC>AB$, an acute-angled triangle with circumcircle $\Gamma$ and $M$ the midpoint of side $BC$. Let $N$ be a point in the interior of $\bigtriangleup ABC$. Let $D$ and $E$ be the feet of the perpendiculars from $N$ to $AB$ and $AC$, respectively. Suppose that $DE\perp AM$. The circumcircle of $\bigtriangleup ADE$ meets $\Gamma$ at $L$ ($L\neq A$), lines $AL$ and $DE$ intersects at $K$ and line $AN$ meets $\Gamma$ at $F$ ($F\neq A$). Prove that if $N$ is the midpoint of the segment $AF$ then $KA=KF$.

2011 Canadian Open Math Challenge, 9

ABC  is a triangle with coordinates A =(2, 6), B =(0, 0), and C =(14, 0). (a) Let P  be the midpoint of AB. Determine the equation of the line perpendicular to AB passing through P. (b) Let Q be the point on line BC  for which PQ is perpendicular to AB. Determine the length of AQ. (c) There is a (unique) circle passing through the points A, B, and C. Determine the radius of this circle.

2008 China Team Selection Test, 1

Let $ ABC$ be a triangle, line $ l$ cuts its sides $ BC,CA,AB$ at $ D,E,F$, respectively. Denote by $ O_{1},O_{2},O_{3}$ the circumcenters of triangle $ AEF,BFD,CDE$, respectively. Prove that the orthocenter of triangle $ O_{1}O_{2}O_{3}$ lies on line $ l$.

2013 Benelux, 3

Let $\triangle ABC$ be a triangle with circumcircle $\Gamma$, and let $I$ be the center of the incircle of $\triangle ABC$. The lines $AI$, $BI$ and $CI$ intersect $\Gamma$ in $D \ne A$, $E \ne B$ and $F \ne C$. The tangent lines to $\Gamma$ in $F$, $D$ and $E$ intersect the lines $AI$, $BI$ and $CI$ in $R$, $S$ and $T$, respectively. Prove that \[\vert AR\vert \cdot \vert BS\vert \cdot \vert CT\vert = \vert ID\vert \cdot \vert IE\vert \cdot \vert IF\vert.\]

2010 Contests, 2

Let $P$ be an interior point of the triangle $ABC$ which is not on the median belonging to $BC$ and satisfying $\angle CAP = \angle BCP. \: BP \cap CA = \{B'\} \: , \: CP \cap AB = \{C'\}$ and $Q$ is the second point of intersection of $AP$ and the circumcircle of $ABC. \: B'Q$ intersects $CC'$ at $R$ and $B'Q$ intersects the line through $P$ parallel to $AC$ at $S.$ Let $T$ be the point of intersection of lines $B'C'$ and $QB$ and $T$ be on the other side of $AB$ with respect to $C.$ Prove that \[\angle BAT = \angle BB'Q \: \Longleftrightarrow \: |SQ|=|RB'| \]

2003 Tournament Of Towns, 2

Triangle $ABC$ is given. Prove that $\frac{R}{r} > \frac{a}{h}$, where $R$ is the radius of the circumscribed circle, $r$ is the radius of the inscribed circle, $a$ is the length of the longest side, $h$ is the length of the shortest altitude.

2003 Italy TST, 2

Let $B\not= A$ be a point on the tangent to circle $S_1$ through the point $A$ on the circle. A point $C$ outside the circle is chosen so that segment $AC$ intersects the circle in two distinct points. Let $S_2$ be the circle tangent to $AC$ at $C$ and to $S_1$ at some point $D$, where $D$ and $B$ are on the opposite sides of the line $AC$. Let $O$ be the circumcentre of triangle $BCD$. Show that $O$ lies on the circumcircle of triangle $ABC$.

Geometry Mathley 2011-12, 11.4

Let $ABC$ be a triangle and $P$ be a point in the plane of the triangle. The lines $AP,BP, CP$ meets $BC,CA,AB$ at $A_1,B_1,C_1$, respectively. Let $A_2,B_2,C_2$ be the Miquel point of the complete quadrilaterals $AB_1PC_1BC$, $BC_1PA_1CA$, $CA_1PB_1AB$. Prove that the circumcircles of the triangles $APA_2$,$BPB_2$, $CPC_2$, $BA_2C$, $AB_2C$, $AC_2B$ have a point of concurrency. Nguyễn Văn Linh

2006 India IMO Training Camp, 1

Let $ABC$ be a triangle and let $P$ be a point in the plane of $ABC$ that is inside the region of the angle $BAC$ but outside triangle $ABC$. [b](a)[/b] Prove that any two of the following statements imply the third. [list] [b](i)[/b] the circumcentre of triangle $PBC$ lies on the ray $\stackrel{\to}{PA}$. [b](ii)[/b] the circumcentre of triangle $CPA$ lies on the ray $\stackrel{\to}{PB}$. [b](iii)[/b] the circumcentre of triangle $APB$ lies on the ray $\stackrel{\to}{PC}$.[/list] [b](b)[/b] Prove that if the conditions in (a) hold, then the circumcentres of triangles $BPC,CPA$ and $APB$ lie on the circumcircle of triangle $ABC$.

2020 Ukraine Team Selection Test, 3

Altitudes $AH1$ and $BH2$ of acute triangle $ABC$ intersect at $H$. Let $w1$ be the circle that goes through $H2$ and touches the line $BC$ at $H1$, and let $w2$ be the circle that goes through $H1$ and touches the line $AC$ at $H2$. Prove, that the intersection point of two other tangent lines $BX$ and $AY$( $X$ and $Y$ are different from $H1$ and $H2$) to circles $w1$ and $w2$ respectively, lies on the circumcircle of triangle $HXY$. Proposed by [i]Danilo Khilko[/i]

2002 Iran Team Selection Test, 4

$O$ is a point in triangle $ABC$. We draw perpendicular from $O$ to $BC,AC,AB$ which intersect $BC,AC,AB$ at $A_{1},B_{1},C_{1}$. Prove that $O$ is circumcenter of triangle $ABC$ iff perimeter of $ABC$ is not less than perimeter of triangles $AB_{1}C_{1},BC_{1}A_{1},CB_{1}A_{1}$.