This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1704

1971 IMO Longlists, 50

Let $P_1$ be a convex polyhedron with vertices $A_1,A_2,\ldots,A_9$. Let $P_i$ be the polyhedron obtained from $P_1$ by a translation that moves $A_1$ to $A_i$. Prove that at least two of the polyhedra $P_1,P_2,\ldots,P_9$ have an interior point in common.

II Soros Olympiad 1995 - 96 (Russia), 9.3

It is known that from these five segments it is possible to form four different right triangles. Find the ratio of the largest segment to the smallest.

2008 China Team Selection Test, 3

Let $ z_{1},z_{2},z_{3}$ be three complex numbers of moduli less than or equal to $ 1$. $ w_{1},w_{2}$ are two roots of the equation $ (z \minus{} z_{1})(z \minus{} z_{2}) \plus{} (z \minus{} z_{2})(z \minus{} z_{3}) \plus{} (z \minus{} z_{3})(z \minus{} z_{1}) \equal{} 0$. Prove that, for $ j \equal{} 1,2,3$, $\min\{|z_{j} \minus{} w_{1}|,|z_{j} \minus{} w_{2}|\}\leq 1$ holds.

2008 Switzerland - Final Round, 4

Consider three sides of an $n \times n \times n$ cube that meet at one of the corners of the cube. For which $n$ is it possible to use this completely and without overlapping to cover strips of paper of size $3 \times 1$? The paper strips can also do this glued over the edges between these cube faces.

2005 China National Olympiad, 5

There are 5 points in a rectangle (including its boundary) with area 1, no three of them are in the same line. Find the minimum number of triangles with the area not more than $\frac 1{4}$, vertex of which are three of the five points.

1982 IMO, 3

Let $S$ be a square with sides length $100$. Let $L$ be a path within $S$ which does not meet itself and which is composed of line segments $A_0A_1,A_1A_2,A_2A_3,\ldots,A_{n-1}A_n$ with $A_0=A_n$. Suppose that for every point $P$ on the boundary of $S$ there is a point of $L$ at a distance from $P$ no greater than $\frac {1} {2}$. Prove that there are two points $X$ and $Y$ of $L$ such that the distance between $X$ and $Y$ is not greater than $1$ and the length of the part of $L$ which lies between $X$ and $Y$ is not smaller than $198$.

1987 Polish MO Finals, 2

A regular $n$-gon is inscribed in a circle radius $1$. Let $X$ be the set of all arcs $PQ$, where $P, Q$ are distinct vertices of the $n$-gon. $5$ elements $L_1, L_2, ... , L_5$ of $X$ are chosen at random (so two or more of the $L_i$ can be the same). Show that the expected length of $L_1 \cap L_2 \cap L_3 \cap L_4 \cap L_5$ is independent of $n$.

1985 All Soviet Union Mathematical Olympiad, 416

Given big enough sheet of cross-lined paper with the side of the squares equal to $1$. We are allowed to cut it along the lines only. Prove that for every $m>12$ we can cut out a rectangle of the greater than $m$ area such, that it is impossible to cut out a rectangle of $m$ area from it.

1980 IMO Longlists, 20

Let $S$ be a set of 1980 points in the plane such that the distance between every pair of them is at least 1. Prove that $S$ has a subset of 220 points such that the distance between every pair of them is at least $\sqrt{3}.$

2010 IMAC Arhimede, 5

Different points $A_1, A_2,..., A_n$ in the plane ($n> 3$) are such that the triangle $A_iA_jA_k$ is obtuse for all the different $i,j,k \in\{1,2,...,n\}$. Prove that there is a point $A_{n + 1}$ in the plane, such that the triangle $A_iA_jA_{n + 1}$ is obtuse for all different $i,j \in\{1,2,...,n\}$

2005 USA Team Selection Test, 5

Find all finite sets $S$ of points in the plane with the following property: for any three distinct points $A,B,$ and $C$ in $S,$ there is a fourth point $D$ in $S$ such that $A,B,C,$ and $D$ are the vertices of a parallelogram (in some order).

Gheorghe Țițeica 2025, P1

Let there be $2n+1$ distinct points on a circle. Consider the set of distances between any two out of the $2n+1$ points. What is the smallest size of this set? [i]Radu Bumbăcea[/i]

1994 All-Russian Olympiad, 8

A plane is divided into unit squares by two collections of parallel lines. For any $n\times n$ square with sides on the division lines, we define its frame as the set of those unit squares which internally touch the boundary of the $n\times n$ square. Prove that there exists only one way of covering a given $100\times 100$ square whose sides are on the division lines with frames of $50$ squares (not necessarily contained in the $100\times 100$ square). (A. Perlin)

Brazil L2 Finals (OBM) - geometry, 2009.5

An ant walks on the plane as follows: initially, it walks $1$ cm in any direction. After, at each step, it changes the trajectory direction by $60^o$ left or right and walks $1$ cm in that direction. It is possible that it returns to the point from which it started in (a) $2008$ steps? (b) $2009$ steps? [img]https://cdn.artofproblemsolving.com/attachments/8/b/d4c0d03c67432c4e790b465a74a876b938244c.png[/img]

1977 All Soviet Union Mathematical Olympiad, 238

Several black and white checkers (tokens?) are standing along the circumference. Two men remove checkers in turn. The first removes all the black ones that had at least one white neighbour, and the second -- all the white ones that had at least one black neighbour. They stop when all the checkers are of the same colour. a) Let there be $40$ checkers initially. Is it possible that after two moves of each man there will remain only one (checker)? b) Let there be $1000$ checkers initially. What is the minimal possible number of moves to reach the position when there will remain only one (checker)?

2018 Vietnam National Olympiad, 3

An investor has two rectangular pieces of land of size $120\times 100$. a. On the first land, she want to build a house with a rectangular base of size $25\times 35$ and nines circular flower pots with diameter $5$ outside the house. Prove that even the flower pots positions are chosen arbitrary on the land, the remaining land is still sufficient to build the desired house. b. On the second land, she want to construct a polygonal fish pond such that the distance from an arbitrary point on the land, outside the pond, to the nearest pond edge is not over $5$. Prove that the perimeter of the pond is not smaller than $440-20\sqrt{2}$.

2020 Colombia National Olympiad, 2

Given a regular $n$-sided polygon with $n \ge 3$. Maria draws some of its diagonals in such a way that each diagonal intersects at most one of the other diagonals drawn in the interior of the polygon. Determine the maximum number of diagonals that Maria can draw in such a way. Note: Two diagonals can share a vertex of the polygon. Vertices are not part of the interior of the polygon.

2022 Portugal MO, 3

The Proenc has a new $8\times 8$ chess board and requires composing it into rectangles that do not overlap, so that: (i) each rectangle has as many white squares as black ones; (ii) there are no two rectangles with the same number of squares. Determines the maximum value of $n$ for which such a decomposition is possible. For this value of $n$, determine all possible sets ${A_1,... ,A_n}$, where $A_i$ is the number of rectangle $i$ in squares, for which a decomposition of the board under the conditions intended actions is possible.

2017 Dutch Mathematical Olympiad, 5

The eight points below are the vertices and the midpoints of the sides of a square. We would like to draw a number of circles through the points, in such a way that each pair of points lie on (at least) one of the circles. Determine the smallest number of circles needed to do this. [asy] unitsize(1 cm); dot((0,0)); dot((1,0)); dot((2,0)); dot((0,1)); dot((2,1)); dot((0,2)); dot((1,2)); dot((2,2)); [/asy]

1978 Dutch Mathematical Olympiad, 3

There are $1978$ points in the flat plane. Each point has a circular disk with that point as its center and the radius is the distance to a fixed point. Prove that there are five of these circular disks, which together cover all $1978$ points (circular disk means: the circle and its inner area).

1996 Tournament Of Towns, (501) 4

There are two very strict laws in the country of Militaria. (i) Anyone who is shorter than $80\%$ (or more) of his “neighbours” (i.e. men living at distance less then $r$ from him) is freed from the military service. (ii) Anyone who is taller than $80\%$ (or more) of his “neighbours” (i.e. men living at distance less then $R$ from him) is allowed to serve in the police. A nice thing is that each man $X$ may choose his own (possibly different) positive numbers $r = r(X)$ and $R = R(X)$. Can it happen that $90\%$ (or more) of the men in Militaria are free from the army and, at the same time, $90\%$ (or more) of the men in Militaria are allowed to serve in the police? (The places of living of the men are fixed points in the plane.) (N Konstantinov)

Novosibirsk Oral Geo Oly VII, 2023.1

Let's call a corner the figure that is obtained by removing one cell from a $2 \times 2$ square. Cut the $6 \times 6$ square into corners so that no two of them form a $2 \times 3$ or $3 \times 2$ rectangle together.

1999 Tournament Of Towns, 5

Is it possible to divide a $6 \times 6$ chessboard into $18$ rectangles, each either $1 \times 2$ or $2 \times 1$, and to draw exactly one diagonal on each rectangle such that no two of these diagonals have a common endpoint? (A Shapovalov)

1990 Tournament Of Towns, (276) 4

We have “bricks” made in the following way: we take a unit cube and glue to three of its faces which have a common vertex three more cubes in such a way that the faces glued together coincide. Is it possible to construct from these bricks an $11 \times 12 \times 13$ box? (A Andjans, Riga )

1938 Moscow Mathematical Olympiad, 040

What is the largest number of parts into which $n$ planes can divide space? We assume that the set of planes is non-degenerate in the sense that any three planes intersect in one point and no four planes have a common point (and for n=2 it is necessary to require that the planes are not parallel).