This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1704

1986 All Soviet Union Mathematical Olympiad, 429

A cube with edge of length $n$ ($n\ge 3$) consists of $n^3$ unit cubes. Prove that it is possible to write different $n^3$ integers on all the unit cubes to provide the zero sum of all integers in the every row parallel to some edge.

2019 Belarusian National Olympiad, 10.8

Call a polygon on a Cartesian plane to be[i]integer[/i] if all its vertices are integer. A convex integer $14$-gon is cut into integer parallelograms with areas not greater than $C$. Find the minimal possible $C$. [i](A. Yuran)[/i]

2013 Tournament of Towns, 5

On an initially colourless plane three points are chosen and marked in red, blue and yellow. At each step two points marked in different colours are chosen. Then one more point is painted in the third colour so that these three points form a regular triangle with the vertices coloured clockwise in ''red, blue, yellow". A point already marked may be marked again so that it may have several colours. Prove that for any number of moves all the points containing the same colour lie on the same line.

2016 Switzerland - Final Round, 4

There are $2016$ different points in the plane. Show that between these points at least $45$ different distances occur.

2010 Contests, 3

On a circular billiard table a ball rebounds from the rails as if the rail was the tangent to the circle at the point of impact. A regular hexagon with its vertices on the circle is drawn on a circular billiard table. A (point-shaped) ball is placed somewhere on the circumference of the hexagon, but not on one of its edges. Describe a periodical track of this ball with exactly four points at the rails. With how many different directions of impact can the ball be brought onto such a track?

1982 IMO Longlists, 55

Let $S$ be a square with sides length $100$. Let $L$ be a path within $S$ which does not meet itself and which is composed of line segments $A_0A_1,A_1A_2,A_2A_3,\ldots,A_{n-1}A_n$ with $A_0=A_n$. Suppose that for every point $P$ on the boundary of $S$ there is a point of $L$ at a distance from $P$ no greater than $\frac {1} {2}$. Prove that there are two points $X$ and $Y$ of $L$ such that the distance between $X$ and $Y$ is not greater than $1$ and the length of the part of $L$ which lies between $X$ and $Y$ is not smaller than $198$.

2005 May Olympiad, 5

The enemy ship has landed on a $9\times 9$ board that covers exactly $5$ squares of the board, like this: [img]https://cdn.artofproblemsolving.com/attachments/2/4/ae5aa95f5bb5e113fd5e25931a2bf8eb872dbe.png[/img] The ship is invisible. Each defensive missile covers exactly one square, and destroys the ship if it hits one of the $5$ squares that it occupies. Determine the minimum number of missiles needed to destroy the enemy ship with certainty .

2008 All-Russian Olympiad, 8

In a chess tournament $ 2n\plus{}3$ players take part. Every two play exactly one match. The schedule is such that no two matches are played at the same time, and each player, after taking part in a match, is free in at least $ n$ next (consecutive) matches. Prove that one of the players who play in the opening match will also play in the closing match.

2006 Cuba MO, 3

$k$ squares of a $m\times n$ gridded board are painted in such a way that the following property holds: [i]If the centers of four squares are the vertices of a quadrilateral of sides parallel to the edges of the board, then at most two of these boxes must be painted..[/i] Find the largest possible value of $k$.

1986 Tournament Of Towns, (125) 7

Each square of a chessboard is painted either blue or red . Prove that the squares of one colour possess the property that the chess queen can perform a tour of all of them. The rules are that the queen may visit the squares of this colour not necessarily only once each , and may not be placed on squares of the other colour, although she may pass over them ; the queen moves along any horizontal , vertical or diagonal file over any distance. (A . K . Tolpugo , Kiev)

2015 Korea - Final Round, 6

There are $2015$ distinct circles in a plane, with radius $1$. Prove that you can select $27$ circles, which form a set $C$, which satisfy the following. For two arbitrary circles in $C$, they intersect with each other or For two arbitrary circles in $C$, they don't intersect with each other.

1968 All Soviet Union Mathematical Olympiad, 111

The city is a rectangle divided onto squares by $m$ streets coming from the West to the East and $n$ streets coming from the North to the South. There are militioners (policemen) on the streets but not on the crossroads. They watch the certain automobile, moving along the closed route, marking the time and the direction of its movement. Its trace is not known in advance, but they know, that it will not pass over the same segment of the way twice. What is the minimal number of the militioners providing the unique determination of the route according to their reports?

1982 All Soviet Union Mathematical Olympiad, 333

$3k$ points are marked on the circumference. They divide it onto $3k$ arcs. Some $k$ of them have length $1$, other $k$ of them have length $2$, the rest $k$ of them have length $3$. Prove that some two of the marked points are the ends of one diameter.

2009 BAMO, 4

Seven congruent line segments are connected together at their endpoints as shown in the figure below at the left. By raising point $E$ the linkage can be made taller, as shown in the figure below and to the right. Continuing to raise $E$ in this manner, it is possible to use the linkage to make $A, C, F$, and $E$ collinear, while simultaneously making $B, G, D$, and $E$ collinear, thereby constructing a new triangle $ABE$. Prove that a regular polygon with center $E$ can be formed from a number of copies of this new triangle $ABE$, joined together at point $E$, and without overlapping interiors. Also find the number of sides of this polygon and justify your answer. [img]https://cdn.artofproblemsolving.com/attachments/2/6/b3826b7ba7ea49642477878a03ac590281df43.png[/img]

2015 Cono Sur Olympiad, 2

$3n$ lines are drawn on the plane ($n > 1$), such that no two of them are parallel and no three of them are concurrent. Prove that, if $2n$ of the lines are coloured red and the other $n$ lines blue, there are at least two regions of the plane such that all of their borders are red. Note: for each region, all of its borders are contained in the original set of lines, and no line passes through the region.

2009 Germany Team Selection Test, 1

In the plane we consider rectangles whose sides are parallel to the coordinate axes and have positive length. Such a rectangle will be called a [i]box[/i]. Two boxes [i]intersect[/i] if they have a common point in their interior or on their boundary. Find the largest $ n$ for which there exist $ n$ boxes $ B_1$, $ \ldots$, $ B_n$ such that $ B_i$ and $ B_j$ intersect if and only if $ i\not\equiv j\pm 1\pmod n$. [i]Proposed by Gerhard Woeginger, Netherlands[/i]

1988 Tournament Of Towns, (172) 5

Is it possible to cover a plane with circles in such a way that exactly $1988$ circles pass through each point? ( N . Vasiliev)

1993 Romania Team Selection Test, 3

Find all integers $n > 1$ for which there is a set $B$ of $n$ points in the plane such that for any $A \in B$ there are three points $X,Y,Z \in B$ with $AX = AY = AZ = 1$.

1992 Tournament Of Towns, (346) 4

On the plane is give a broken line $ABCD$ in which $AB = BC = CD = 1$, and $AD$ is not equal to $1$. The positions of $B$ and $C$ are fixed but $A$ and $D$ change their positions in turn according to the following rule (preserving the distance rules given): the point $A$ is reflected with respect to the line $BD$, then $D$ is reflected with respect to the line $AC$ (in which $A$ occupies its new position), then $A$ is reflected with respect to the line $BD$ ($D$ occupying its new position), $D$ is reflected with respect to the line $AC$, and so on. Prove that after several steps $A$ and $D$ coincide with their initial positions. (M Kontzewich)

2013 Dutch IMO TST, 4

Let $n \ge 3$ be an integer, and consider a $n \times n$-board, divided into $n^2$ unit squares. For all $m \ge 1$, arbitrarily many $1\times m$-rectangles (type I) and arbitrarily many $m\times 1$-rectangles (type II) are available. We cover the board with $N$ such rectangles, without overlaps, and such that every rectangle lies entirely inside the board. We require that the number of type I rectangles used is equal to the number of type II rectangles used.(Note that a $1 \times 1$-rectangle has both types.) What is the minimal value of $N$ for which this is possible?

2018 Singapore Senior Math Olympiad, 1

You are given some equilateral triangles and squares, all with side length 1, and asked to form convex $n$ sided polygons using these pieces. If both types must be used, what are the possible values of $n$, assuming that there is sufficient supply of the pieces?

2003 Romania National Olympiad, 4

Let $ P$ be a plane. Prove that there exists no function $ f: P\rightarrow P$ such that for every convex quadrilateral $ ABCD$, the points $ f(A),f(B),f(C),f(D)$ are the vertices of a concave quadrilateral. [i]Dinu Şerbănescu[/i]

BIMO 2022, 2

Let $\mathcal{S}$ be a set of $2023$ points in a plane, and it is known that the distances of any two different points in $S$ are all distinct. Ivan colors the points with $k$ colors such that for every point $P \in \mathcal{S}$, the closest and the furthest point from $P$ in $\mathcal{S}$ also have the same color as $P$. What is the maximum possible value of $k$? [i]Proposed by Ivan Chan Kai Chin[/i]

1973 Czech and Slovak Olympiad III A, 6

Consider a square of side of length 50. A polygonal chain $L$ is given in the square such that for every point $P$ of the square there is a point $Q$ of the chain with the property $PQ\le 1.$ Show that the length of $L$ is greater than 1248.

1985 Poland - Second Round, 3

Let $ L $ be the set of all polylines $ ABCDA $, where $ A, B, C, D $ are different vertices of a fixed regular $1985$ -gon. We randomly select a polyline from the set $L$. Calculate the probability that it is the side of a convex quadrilateral.