This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1704

2007 Tournament Of Towns, 3

Michael is at the centre of a circle of radius $100$ metres. Each minute, he will announce the direction in which he will be moving. Catherine can leave it as is, or change it to the opposite direction. Then Michael moves exactly $1$ metre in the direction determined by Catherine. Does Michael have a strategy which guarantees that he can get out of the circle, even though Catherine will try to stop him?

1985 Austrian-Polish Competition, 9

We are given a convex polygon. Show that one can find a point $Q$ inside the polygon and three vertices $A_1,A_2,A_3$ (not necessarily consecutive) such that each ray $A_iQ$ ($i=1,2,3$) makes acute angles with the two sides emanating from $A_i$.

2011 Tournament of Towns, 2

A rectangle is divided by $10$ horizontal and $10$ vertical lines into $121$ rectangular cells. If $111$ of them have integer perimeters, prove that they all have integer perimeters.

2005 All-Russian Olympiad Regional Round, 10.8

A rectangle is drawn on checkered paper, the sides of which form angles of $45^o$ with the grid lines, and the vertices do not lie on the grid lines. Can an odd number of grid lines intersect each side of a rectangle?

1999 North Macedonia National Olympiad, 4

Do there exist $100$ straight lines on a plane such that they intersect each other in exactly $1999$ points?

1977 Czech and Slovak Olympiad III A, 1

There are given 2050 points in a unit cube. Show that there are 5 points lying in an (open) ball with the radius 1/9.

1988 Austrian-Polish Competition, 8

We are given $1988$ unit cubes. Using some or all of these cubes, we form three quadratic boards $A, B,C$ of dimensions $a \times a \times 1$, $b \times b \times 1$, and $c \times c \times 1$ respectively, where $a \le b \le c$. Now we place board $B$ on board $C$ so that each cube of $B$ is precisely above a cube of $C$ and $B$ does not overlap $C$. Similarly, we place $A$ on $B$. This gives us a three-floor tower. What choice of $a, b$ and $c$ gives the maximum number of such three-floor towers?

2024 Spain Mathematical Olympiad, 5

Given two points $p_1=(x_1, y_1)$ and $p_2=(x_2, y_2)$ on the plane, denote by $\mathcal{R}(p_1,p_2)$ the rectangle with sides parallel to the coordinate axes and with $p_1$ and $p_2$ as opposite corners, that is, \[\{(x,y)\in \mathbb{R}^2:\min\{x_1, x_2\}\leq x\leq \max\{x_1, x_2\},\min\{y_1, y_2\}\leq y\leq \max\{y_1, y_2\}\}.\] Find the largest value of $k$ for which the following statement is true: for all sets $\mathcal{S}\subset\mathbb{R}^2$ with $|\mathcal{S}|=2024$, there exist two points $p_1, p_2\in\mathcal{S}$ such that $|\mathcal{S}\cap\mathcal{R}(p_1, p_2)|\geq k$.

2019 Romanian Master of Mathematics, 4

Prove that for every positive integer $n$ there exists a (not necessarily convex) polygon with no three collinear vertices, which admits exactly $n$ diffferent triangulations. (A [i]triangulation[/i] is a dissection of the polygon into triangles by interior diagonals which have no common interior points with each other nor with the sides of the polygon)

1983 All Soviet Union Mathematical Olympiad, 358

The points $A_1,B_1,C_1,D_1$ and $A_2,B_2,C_2,D_2$ are orthogonal projections of the $ABCD$ tetrahedron vertices on two planes. Prove that it is possible to move one of the planes to provide the parallelness of lines $(A_1A_2), (B_1B_2), (C_1C_2)$ and $(D_1D_2)$ .

1941 Moscow Mathematical Olympiad, 087

On a plane, several points are chosen so that a disc of radius $1$ can cover every $3$ of them. Prove that a disc of radius $1$ can cover all the points.

2025 Malaysian APMO Camp Selection Test, 5

Fix a positive integer $n\ge 2$. For any cyclic $2n$-gon $P_1 P_2\cdots P_{2n}$ in this order, define its score as the maximal possible value of $$\angle P_iXP_{i+1} + \angle P_{i+n}XP_{i+n+1}$$ across all $1\le i\le n$ (indices modulo $n$), and over all points $X$ inside the $2n$-gon including its boundary. Prove that there exist a real number $r$ such that a cyclic $2n$-gon is regular if and only if it has score $r$. [i]Proposed by Wong Jer Ren[/i]

2019 Israel Olympic Revenge, P2

A $5779$-dimensional polytope is call a [b]$k$-tope[/b] if it has exactly $k$ $5778$-dimensional faces. Find all sequences $b_{5780}, b_{5781}, \dots, b_{11558}$ of nonnegative integers, not all $0$, such that the following condition holds: It is possible to tesselate every $5779$-dimensional polytope with [u]convex[/u] $5779$-dimensional polytopes, such that the number of $k$-topes in the tessellation is proportional to $b_k$, while there are no $k$-topes in the tessellation if $k\notin \{5780, 5781, \dots, 11558\}$.

2023 European Mathematical Cup, 2

Let $n>5$ be an integer. There are $n$ points in the plane, no three of them collinear. Each day, Tom erases one of the points, until there are three points left. On the $i$-th day, for $1<i<n-3$, before erasing that day's point, Tom writes down the positive integer $v(i)$ such that the convex hull of the points at that moment has $v(i)$ vertices. Finally, he writes down $v(n-2) = 3$. Find the greatest possible value that the expression $$|v(1)-v(2)|+ |v(2)-v(3)| + \ldots + |v(n-3)-v(n-2)|$$ can obtain among all possible initial configurations of $n$ points and all possible Tom's moves. [i]Remark[/i]. A convex hull of a finite set of points in the plane is the smallest convex polygon containing all the points of the set (inside it or on the boundary). [i]Ivan Novak, Namik Agić[/i]

1999 Switzerland Team Selection Test, 7

A square is dissected into rectangles with sides parallel to the sides of the square. For each of these rectangles, the ratio of its shorter side to its longer side is considered. Show that the sum of all these ratios is at least $1$.

2024 India IMOTC, 1

A sleeping rabbit lies in the interior of a convex $2024$-gon. A hunter picks three vertices of the polygon and he lays a trap which covers the interior and the boundary of the triangular region determined by them. Determine the minimum number of times he needs to do this to guarantee that the rabbit will be trapped. [i]Proposed by Anant Mudgal and Rohan Goyal[/i]

1997 Argentina National Olympiad, 1

Let $s$ and $t$ be two parallel lines. We have marked $k$ points on line $s$ and $n$ points on line $t$ ($k\geq n$). If it is known that the total number of triangles that have their three vertices at marked points is $220$, find all possible values of $k$ and $n$.

1982 Poland - Second Round, 6

Given a finite set $B$ of points in space, any two distances between the points of this set are different. Each point of the set $B$ is connected by a line segment to the closest point of the set $B$. This way we will get a set of sections, one of which (any chosen one) we paint red, all the remaining sections we paint green. Prove that there are two points of the set $B$ that cannot be connected by a line composed of green segments.

2008 IMO Shortlist, 5

Let $ k$ and $ n$ be integers with $ 0\le k\le n \minus{} 2$. Consider a set $ L$ of $ n$ lines in the plane such that no two of them are parallel and no three have a common point. Denote by $ I$ the set of intersections of lines in $ L$. Let $ O$ be a point in the plane not lying on any line of $ L$. A point $ X\in I$ is colored red if the open line segment $ OX$ intersects at most $ k$ lines in $ L$. Prove that $ I$ contains at least $ \dfrac{1}{2}(k \plus{} 1)(k \plus{} 2)$ red points. [i]Proposed by Gerhard Woeginger, Netherlands[/i]

2008 IMO Shortlist, 1

In the plane we consider rectangles whose sides are parallel to the coordinate axes and have positive length. Such a rectangle will be called a [i]box[/i]. Two boxes [i]intersect[/i] if they have a common point in their interior or on their boundary. Find the largest $ n$ for which there exist $ n$ boxes $ B_1$, $ \ldots$, $ B_n$ such that $ B_i$ and $ B_j$ intersect if and only if $ i\not\equiv j\pm 1\pmod n$. [i]Proposed by Gerhard Woeginger, Netherlands[/i]

1996 Tournament Of Towns, (518) 1

Can one paint four vertices of a cube red and the other four points black so that any plane passing through three points of the same colour contains a vertex of the other colour? (Mebius, Sharygin)

2017 Auckland Mathematical Olympiad, 5

A rectangle $ABCD$ is given. On the side $AB$, n different points are chosen strictly between $A$ and $B$. Similarly, $m$ different points are chosen on the side $AD$ between $A$ and $D$. Lines are drawn from the points parallel to the sides. How many rectangles are formed in this way? An example of a particular rectangle $ABCD$ is shown with a shaded one rectangle that may be formed in this way. [img]https://cdn.artofproblemsolving.com/attachments/e/4/f7a04300f0c846fb6418d12dc23f5c74b54242.png[/img]

2014 Belarus Team Selection Test, 3

$n$ points are marked on a plane. Each pair of these points is connected with a segment. Each segment is painted one of four different colors. Find the largest possible value of $n$ such that one can paint the segments so that for any four points there are four segments (connecting these four points) of four different colors. (E. Barabanov)

1977 IMO Shortlist, 2

A lattice point in the plane is a point both of whose coordinates are integers. Each lattice point has four neighboring points: upper, lower, left, and right. Let $k$ be a circle with radius $r \geq 2$, that does not pass through any lattice point. An interior boundary point is a lattice point lying inside the circle $k$ that has a neighboring point lying outside $k$. Similarly, an exterior boundary point is a lattice point lying outside the circle $k$ that has a neighboring point lying inside $k$. Prove that there are four more exterior boundary points than interior boundary points.

1997 Dutch Mathematical Olympiad, 4

We look at an octahedron, a regular octahedron, having painted one of the side surfaces red and the other seven surfaces blue. We throw the octahedron like a die. The surface that comes up is painted: if it is red it is painted blue and if it is blue it is painted red. Then we throw the octahedron again and paint it again according to the above rule. In total we throw the octahedron $10$ times. How many different octahedra can we get after finishing the $10$th time? [i]Two octahedra are different if they cannot be converted into each other by rotation.[/i]