This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1704

2015 Singapore Junior Math Olympiad, 4

Let $A$ be a set of numbers chosen from $1,2,..., 2015$ with the property that any two distinct numbers, say $x$ and $y$, in $A$ determine a unique isosceles triangle (which is non equilateral) whose sides are of length $x$ or $y$. What is the largest possible size of $A$?

1965 Miklós Schweitzer, 4

The plane is divided into domains by $ n$ straight lines in general position, where $ n \geq 3$. Determine the maximum and minimum possible number of angular domains among them. (We say that $ n$ lines are in general position if no two are parallel and no three are concurrent.)

2004 Cono Sur Olympiad, 6

Let $m$, $n$ be positive integers. On an $m\times{n}$ checkerboard, divided into $1\times1$ squares, we consider all paths that go from upper right vertex to the lower left vertex, travelling exclusively on the grid lines by going down or to the left. We define the area of a path as the number of squares on the checkerboard that are below this path. Let $p$ be a prime such that $r_{p}(m)+r_{p}(n)\geq{p}$, where $r_{p}(m)$ denotes the remainder when $m$ is divided by $p$ and $r_{p}(n)$ denotes the remainder when $n$ is divided by $p$. How many paths have an area that is a multiple of $p$?

1963 All Russian Mathematical Olympiad, 037

Given regular $45$-gon. Can you mark its corners with the digits $\{0,1,...,9\}$ in such a way, that for every pair of digits there would be a side with both ends marked with those digits?

2006 Tournament of Towns, 1

Prove that one can always mark $50$ points inside of any convex $100$-gon, so that each its vertix is on a straight line connecting some two marked points. (4)

2025 PErA, P1

Let $S$ be a set of at least three points of the plane in general position. Prove that there exists a non-intersecting polygon whose vertices are exactly the points of $S$.

IV Soros Olympiad 1997 - 98 (Russia), 10.9

There are $16$ points marked on the circle. Find the greatest possible number of acute triangles with vertices at the marked points.

2023 ELMO Shortlist, C4

Let \(n\) be a positive integer and consider an \(n\times n\) square grid. For \(1\le k\le n\), a [i]python[/i] of length \(k\) is a snake that occupies \(k\) consecutive cells in a single row, and no other cells. Similarly, an [i]anaconda[/i] of length \(k\) is a snake that occupies \(k\) consecutive cells in a single column, and no other cells. The grid contains at least one python or anaconda, and it satisfies the following properties: [list] [*]No cell is occupied by multiple snakes. [*]If a cell in the grid is immediately to the left or immediately to the right of a python, then that cell must be occupied by an anaconda. [*]If a cell in the grid is immediately to above or immediately below an anaconda, then that cell must be occupied by a python. [/list] Prove that the sum of the squares of the lengths of the snakes is at least \(n^2\). [i]Proposed by Linus Tang[/i]

2017-IMOC, C5

We say a finite set $S$ of points with $|S|\ge3$ is [i]good[/i] if for any three distinct elements of $S$, they are non-collinear and the orthocenter of them is also in $S$. Find all good sets.

2019 Romanian Masters In Mathematics, 4

Prove that for every positive integer $n$ there exists a (not necessarily convex) polygon with no three collinear vertices, which admits exactly $n$ diffferent triangulations. (A [i]triangulation[/i] is a dissection of the polygon into triangles by interior diagonals which have no common interior points with each other nor with the sides of the polygon)

2010 China Northern MO, 4

As shown in the figure, chess pieces are placed at the intersection points of the $64$ grid lines of the $7\times 7$ grid table. At most $1$ piece is placed at each point, and a total of $k$ left chess pieces are placed. No matter how they are placed, there will always be $4$ chess pieces, and the grid in which they are located the points form the four vertices of a rectangle (the sides of the rectangle are parallel to the grid lines). Try to find the minimum value of $k$. [img]https://cdn.artofproblemsolving.com/attachments/5/b/23a79f43d3f4c9aade1ba9eaa7a282c3b3b86f.png[/img]

2023 Peru MO (ONEM), 3

Prove that, for every integer $n \ge 2$, it is possible to divide a regular hexagon into $n$ quadrilaterals such that any two of them are similar. Clarification: Two quadrilaterals are similar if they have their corresponding sides proportional and their corresponding angles are equal, that is, the quadrilaterals $ABCD$ and $EFGH$ are similar if $\frac{AB}{EF}= \frac{BC}{FG}= \frac{CD}{GH} = \frac{DA}{HE}$, $\angle ABC = \angle EFG$, $\angle BCD = \angle FGH$, $\angle CDA = \angle GHE$ and $\angle DAB = \angle HEF$.

1966 IMO Shortlist, 49

Two mirror walls are placed to form an angle of measure $\alpha$. There is a candle inside the angle. How many reflections of the candle can an observer see?

2009 Singapore Team Selection Test, 3

In the plane we consider rectangles whose sides are parallel to the coordinate axes and have positive length. Such a rectangle will be called a [i]box[/i]. Two boxes [i]intersect[/i] if they have a common point in their interior or on their boundary. Find the largest $ n$ for which there exist $ n$ boxes $ B_1$, $ \ldots$, $ B_n$ such that $ B_i$ and $ B_j$ intersect if and only if $ i\not\equiv j\pm 1\pmod n$. [i]Proposed by Gerhard Woeginger, Netherlands[/i]

1985 Tournament Of Towns, (096) 5

A square is divided into rectangles. A "chain" is a subset $K$ of the set of these rectangles such that there exists a side of the square which is covered by projections of rectangles of $K$ and such that no point of this side is a projection of two inner points of two inner points of two different rectangles of $K$. (a) Prove that every two rectangles in such a division are members of a certain "chain". (b) Solve the similar problem for a cube, divided into rectangular parallelopipeds (in the definition of chain , replace "side" by"edge") . (A.I . Golberg, V.A. Gurevich)

1998 Austrian-Polish Competition, 8

In each unit square of an infinite square grid a natural number is written. The polygons of area $n$ with sides going along the gridlines are called [i]admissible[/i], where $n > 2$ is a given natural number. The [i]value [/i] of an admissible polygon is defined as the sum of the numbers inside it. Prove that if the values of any two congruent admissible polygons are equal, then all the numbers written in the unit squares of the grid are equal. (We recall that a symmetric image of polygon $P$ is congruent to $P$.)

2000 All-Russian Olympiad Regional Round, 8.3

What is the smallest number of sides that an polygon can have (not necessarily convex), which can be cut into parallelograms?

2024 Baltic Way, 15

There is a set of $N\geq 3$ points in the plane, such that no three of them are collinear. Three points $A$, $B$, $C$ in the set are said to form a [i]Baltic triangle[/i] if no other point in the set lies on the circumcircle of triangle $ABC$. Assume that there exists at least one Baltic triangle. Show that there exist at least $\displaystyle\frac{N}{3}$ Baltic triangles.

1988 Bundeswettbewerb Mathematik, 2

A circle is somehow divided by $3k$ points into $k$ arcs of lengths $1, 2$ and $3$ each. Prove that two of these points are always diametrically opposite.

1975 Dutch Mathematical Olympiad, 5

Describe a method to convert any triangle into a rectangle with side 1 and area equal to the original triangle by dividing that triangle into finitely many subtriangles.

1966 IMO Longlists, 4

Given $5$ points in the plane, no three of them being collinear. Show that among these $5$ points, we can always find $4$ points forming a convex quadrilateral.

2000 Switzerland Team Selection Test, 3

An equilateral triangle of side $1$ is covered by five congruent equilateral triangles of side $s < 1$ with sides parallel to those of the larger triangle. Show that some four of these smaller triangles also cover the large triangle.

2020 Princeton University Math Competition, 11

Three (not necessarily distinct) points in the plane which have integer coordinates between $ 1$ and $2020$, inclusive, are chosen uniformly at random. The probability that the area of the triangle with these three vertices is an integer is $a/b$ in lowest terms. If the three points are collinear, the area of the degenerate triangle is $0$. Find $a + b$.

1971 IMO Longlists, 49

Let $P_1$ be a convex polyhedron with vertices $A_1,A_2,\ldots,A_9$. Let $P_i$ be the polyhedron obtained from $P_1$ by a translation that moves $A_1$ to $A_i$. Prove that at least two of the polyhedra $P_1,P_2,\ldots,P_9$ have an interior point in common.

2020 Tournament Of Towns, 3

Is it possible to inscribe an $N$-gon in a circle so that all the lengths of its sides are different and all its angles (in degrees) are integer, where a) $N = 19$, b) $N = 20$ ? Mikhail Malkin