This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1704

1971 All Soviet Union Mathematical Olympiad, 147

Given an unit square and some circles inside. Radius of each circle is less than $0.001$, and there is no couple of points belonging to the different circles with the distance between them $0.001$ exactly. Prove that the area, covered by the circles is not greater than $0.34$.

1955 Moscow Mathematical Olympiad, 309

A point $O$ inside a convex $n$-gon $A_1A_2 . . .A_n$ is connected with segments to its vertices. The sides of this $n$-gon are numbered $1$ to $n$ (distinct sides have distinct numbers). The segments $OA_1,OA_2, . . . ,OA_n$ are similarly numbered. a) For $n = 9$ find a numeration such that the sum of the sides’ numbers is the same for all triangles $A_1OA_2, A_2OA_3, . . . , A_nOA_1$. b) Prove that for $n = 10$ there is no such numeration.

2021 Baltic Way, 9

We are given $2021$ points on a plane, no three of which are collinear. Among any $5$ of these points, at least $4$ lie on the same circle. Is it necessarily true that at least $2020$ of the points lie on the same circle?

2007 China Team Selection Test, 3

Assume there are $ n\ge3$ points in the plane, Prove that there exist three points $ A,B,C$ satisfying $ 1\le\frac{AB}{AC}\le\frac{n\plus{}1}{n\minus{}1}.$

1980 Swedish Mathematical Competition, 3

Let $T(n)$ be the number of dissimilar (non-degenerate) triangles with all side lengths integral and $\leq n$. Find $T(n+1)-T(n)$.

2000 Estonia National Olympiad, 5

At a given plane with $2,000$ lines, all those with an odd number of different points of intersection with intersecting lines. a) Can there be an odd number of red lines if in the plane given there are no parallel lines? b) Can there be an odd number of red lines if none of any 3 given lines intersect at one point?

1978 Austrian-Polish Competition, 9

In a convex polygon $P$ some diagonals have been drawn, without intersections inside $P$. Show that there exist at least two vertices of $P$, neither one of them being an endpoint of any one of those diagonals.

1998 Belarus Team Selection Test, 1

For each finite set $ U$ of nonzero vectors in the plane we define $ l(U)$ to be the length of the vector that is the sum of all vectors in $ U.$ Given a finite set $ V$ of nonzero vectors in the plane, a subset $ B$ of $ V$ is said to be maximal if $ l(B)$ is greater than or equal to $ l(A)$ for each nonempty subset $ A$ of $ V.$ (a) Construct sets of 4 and 5 vectors that have 8 and 10 maximal subsets respectively. (b) Show that, for any set $ V$ consisting of $ n \geq 1$ vectors the number of maximal subsets is less than or equal to $ 2n.$

1977 Dutch Mathematical Olympiad, 4

There are an even number of points in a plane. No three of them lie on one straight line. Half of the points are red, the other half are blue. Prove that there exists a connecting line of a red and a blue point such that in each of the half-planes bounded by that line the number of red points is equal to the number of blue points.

1967 Swedish Mathematical Competition, 1

$p$ parallel lines are drawn in the plane and $q$ lines perpendicular to them are also drawn. How many rectangles are bounded by the lines?

2010 Federal Competition For Advanced Students, P2, 6

A diagonal of a convex hexagon is called [i]long[/i] if it decomposes the hexagon into two quadrangles. Each pair of [i]long[/i] diagonals decomposes the hexagon into two triangles and two quadrangles. Given is a hexagon with the property, that for each decomposition by two [i]long[/i] diagonals the resulting triangles are both isosceles with the side of the hexagon as base. Show that the hexagon has a circumcircle.

2022 Baltic Way, 8

For a natural number $n \ge 3$, we draw $n - 3$ internal diagonals in a non self-intersecting, but not necessarily convex, n-gon, cutting the $n$-gon into $n - 2$ triangles. It is known that the value (in degrees) of any angle in any of these triangles is a natural number and no two of these angle values are equal. What is the largest possible value of $n$?

2018 Ukraine Team Selection Test, 5

Find the smallest positive number $\lambda$ such that for an arbitrary $12$ points on the plane $P_1,P_2,...P_{12}$ (points may coincide), with distance between arbitrary two of them does not exceeds $1$, holds the inequality $\sum_{1\le i\le j\le 12} P_iP_j^2 \le \lambda$

1972 Poland - Second Round, 4

A cube with edge length $ n $ is divided into $ n^3 $ unit cubes by planes parallel to its faces. How many pairs of such unit cubes exist that have no more than two vertices in common?

2015 India PRMO, 4

$4.$ How many line segments have both their endpoints located at the vertices of a given cube $?$

2018 Dutch IMO TST, 1

A set of lines in the plan is called [i]nice [/i]i f every line in the set intersects an odd number of other lines in the set. Determine the smallest integer $k \ge 0$ having the following property: for each $2018$ distinct lines $\ell_1, \ell_2, ..., \ell_{2018}$ in the plane, there exist lines $\ell_{2018+1},\ell_{2018+2}, . . . , \ell_{2018+k}$ such that the lines $\ell_1, \ell_2, ..., \ell_{2018+k}$ are distinct and form a [i]nice [/i] set.

2019 Tournament Of Towns, 6

A cube consisting of $(2N)^3$ unit cubes is pierced by several needles parallel to the edges of the cube (each needle pierces exactly $2N$ unit cubes). Each unit cube is pierced by at least one needle. Let us call any subset of these needles “regular” if there are no two needles in this subset that pierce the same unit cube. a) Prove that there exists a regular subset consisting of $2N^2$ needles such that all of them have either the same direction or two different directions. b) What is the maximum size of a regular subset that does exist for sure? (Nikita Gladkov, Alexandr Zimin)

1987 All Soviet Union Mathematical Olympiad, 446

An $L$ is an arrangement of $3$ adjacent unit squares formed by deleting one unit square from a $2 \times 2$ square. a) How many $L$s can be placed on an $8 \times 8$ board (with no interior points overlapping)? b) Show that if any one square is deleted from a $1987 \times 1987$ board, then the remaining squares can be covered with $L$s (with no interior points overlapping).

2009 Tournament Of Towns, 1

In a convex $2009$-gon, all diagonals are drawn. A line intersects the $2009$-gon but does not pass through any of its vertices. Prove that the line intersects an even number of diagonals.

1996 Estonia National Olympiad, 5

Suppose that $n$ teterahedra are given in space such that any two of them have at least two common vertices, but any three have at most one common vertex. Find the greatest possible $n$.

2012 Ukraine Team Selection Test, 10

A unit square is cut by $n$ straight lines . Prove that in at least one of these parts one can completely fit a square with side $\frac{1}{n+1}$ [hide=original wording]Одиничний квадрат розрізано $n$ прямими на частини. Доведіть, що хоча б в одній з цих частин можна повністю розмістити квадрат зі стороною $\frac{1}{n+1}$[/hide] [hide=notes] The selection panel jury made a mistake because the solution known to it turned out to be incorrect. As it turned out, the assertion of the problem is still correct, although it cannot be proved by simple methods, see. article: Keith Ball. Тhe plank problem for symmetric bodies // Іпѵепііопез МаіЬешаІіеае. — 1991. — Ѵоі. 104, по. 1. — Р. 535-543. [url]https://arxiv.org/abs/math/9201218[/url][/hide]

1980 Czech And Slovak Olympiad IIIA, 3

The set $M$ was formed from the plane by removing three points $A, B, C$, which are vertices of the triangle. What is the smallest number of convex sets whose union is $M$? [hide=original wording] Množina M Vznikla z roviny vyjmutím tří bodů A, B, C, které jsou vrcholy trojúhelníka. Jaký je nejmenší počet konvexních množin, jejichž sjednocením je M?[/hide]

1999 Estonia National Olympiad, 3

For which values of $n$ it is possible to cover the side wall of staircase of n steps (for $n = 6$ in the figure) with plates of shown shape? The width and height of each step is $1$ dm, the dimensions of plate are $2 \times 2$ dm and from the corner there is cut out a piece with dimensions $1\times 1$ dm. [img]https://cdn.artofproblemsolving.com/attachments/e/e/ac7a52f3dd40480f82024794708c5a449e0c2b.png[/img]

1984 Bundeswettbewerb Mathematik, 2

Given is a regular $n$-gon with circumradius $1$. $L$ is the set of (different) lengths of all connecting segments of its endpoints. What is the sum of the squares of the elements of $L$?

1973 Kurschak Competition, 3

$n > 4$ planes are in general position (so every $3$ planes have just one common point, and no point belongs to more than $3$ planes). Show that there are at least $\frac{2n-3}{ 4}$ tetrahedra among the regions formed by the planes.