This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2016 Postal Coaching, 3

Five airlines operate in a country consisting of $36$ cities. Between any pair of cities exactly one airline operates two way flights. If some airlines operates between cities $A,B$ and $B,C$ we say that the ordered triple $A,B,C$ is properly-connected. Determine the largest possible value of $k$ such that no matter how these flights are arranged there are at least $k$ properly-connected triples.

2013 Germany Team Selection Test, 2

Given a $m\times n$ grid rectangle with $m,n \ge 4$ and a closed path $P$ that is not self intersecting from inner points of the grid, let $A$ be the number of points on $P$ such that $P$ does not turn in them and let $B$ be the number of squares that $P$ goes through two non-adjacent sides of them furthermore let $C$ be the number of squares with no side in $P$. Prove that $$A=B-C+m+n-1.$$

2019 MOAA, Sets 1-5

[u]Set 1[/u] [b]p1.[/b] Farmer John has $4000$ gallons of milk in a bucket. On the first day, he withdraws $10\%$ of the milk in the bucket for his cows. On each following day, he withdraws a percentage of the remaining milk that is $10\%$ more than the percentage he withdrew on the previous day. For example, he withdraws $20\%$ of the remaining milk on the second day. How much milk, in gallons, is left after the tenth day? [b]p2.[/b] Will multiplies the first four positive composite numbers to get an answer of $w$. Jeremy multiplies the first four positive prime numbers to get an answer of $j$. What is the positive difference between $w$ and $j$? [b]p3.[/b] In Nathan’s math class of $60$ students, $75\%$ of the students like dogs and $60\%$ of the students like cats. What is the positive difference between the maximum possible and minimum possible number of students who like both dogs and cats? [u]Set 2[/u] [b]p4.[/b] For how many integers $x$ is $x^4 - 1$ prime? [b]p5.[/b] Right triangle $\vartriangle ABC$ satisfies $\angle BAC = 90^o$. Let $D$ be the foot of the altitude from $A$ to $BC$. If $AD = 60$ and $AB = 65$, find the area of $\vartriangle ABC$. [b]p6.[/b] Define $n! = n \times (n - 1) \times ... \times 1$. Given that $3! + 4! + 5! = a^2 + b^2 + c^2$ for distinct positive integers $a, b, c$, find $a + b + c$. [u]Set 3[/u] [b]p7.[/b] Max nails a unit square to the plane. Let M be the number of ways to place a regular hexagon (of any size) in the same plane such that the square and hexagon share at least $2$ vertices. Vincent, on the other hand, nails a regular unit hexagon to the plane. Let $V$ be the number of ways to place a square (of any size) in the same plane such that the square and hexagon share at least $2$ vertices. Find the nonnegative difference between $M$ and $V$ . [b]p8.[/b] Let a be the answer to this question, and suppose $a > 0$. Find $\sqrt{a +\sqrt{a +\sqrt{a +...}}}$ . [b]p9.[/b] How many ordered pairs of integers $(x, y)$ are there such that $x^2 - y^2 = 2019$? [u]Set 4[/u] [b]p10.[/b] Compute $\frac{p^3 + q^3 + r^3 - 3pqr}{p + q + r}$ where $p = 17$, $q = 7$, and $r = 8$. [b]p11.[/b] The unit squares of a $3 \times 3$ grid are colored black and white. Call a coloring good if in each of the four $2 \times 2$ squares in the $3 \times 3$ grid, there is either exactly one black square or exactly one white square. How many good colorings are there? Consider rotations and reflections of the same pattern distinct colorings. [b]p12.[/b] Define a $k$-[i]respecting [/i]string as a sequence of $k$ consecutive positive integers $a_1$, $a_2$, $...$ , $a_k$ such that $a_i$ is divisible by $i$ for each $1 \le i \le k$. For example, $7$, $8$, $9$ is a $3$-respecting string because $7$ is divisible by $1$, $8$ is divisible by $2$, and $9$ is divisible by $3$. Let $S_7$ be the set of the first terms of all $7$-respecting strings. Find the sum of the three smallest elements in $S_7$. [u]Set 5[/u] [b]p13.[/b] A triangle and a quadrilateral are situated in the plane such that they have a finite number of intersection points $I$. Find the sum of all possible values of $I$. [b]p14.[/b] Mr. DoBa continuously chooses a positive integer at random such that he picks the positive integer $N$ with probability $2^{-N}$ , and he wins when he picks a multiple of 10. What is the expected number of times Mr. DoBa will pick a number in this game until he wins? [b]p15.[/b] If $a, b, c, d$ are all positive integers less than $5$, not necessarily distinct, find the number of ordered quadruples $(a, b, c, d)$ such that $a^b - c^d$ is divisible by $5$. PS. You had better use hide for answers. Last 4 sets have been posted [url=https://artofproblemsolving.com/community/c4h2777362p24370554]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2022/2023 Tournament of Towns, P1

There are 2023 dice on the table. For 1 dollar, one can pick any dice and put it back on any of its four (other than top or bottom) side faces. How many dollars at a minimum will guarantee that all the dice have been repositioned to show equal number of dots on top faces? [i]Egor Bakaev[/i]

2014 Contests, 2

There are $n$ holes in a circle. The holes are numbered $1,2,3$ and so on to $n$. In the beginning, there is a peg in every hole except for hole $1$. A peg can jump in either direction over one adjacent peg to an empty hole immediately on the other side. After a peg moves, the peg it jumped over is removed. The puzzle will be solved if all pegs disappear except for one. For example, if $n=4$ the puzzle can be solved in two jumps: peg $3$ jumps peg $4$ to hole $1$, then peg $2$ jumps the peg in $1$ to hole $4$. (See illustration below, in which black circles indicate pegs and white circles are holes.) [center][img]http://i.imgur.com/4ggOa8m.png[/img][/center] [list=a] [*]Can the puzzle be solved for $n=5$? [*]Can the puzzle be solved for $n=2014$? [/list] In each part (a) and (b) either describe a sequence of moves to solve the puzzle or explain why it is impossible to solve the puzzle.

2018 Taiwan APMO Preliminary, 7

$240$ students are participating a big performance show. They stand in a row and face to their coach. The coach askes them to count numbers from left to right, starting from $1$. (Of course their counts be like $1,2,3,...$)The coach askes them to remember their number and do the following action: First, if your number is divisible by $3$ then turn around. Then, if your number is divisible by $5$ then turn around. Finally, if your number is divisible by $7$ then turn around. (a) How many students are face to coach now? (b) What is the number of the $66^{\text{th}}$ student counting from left who is face to coach?

2024 Baltic Way, 6

A [i]labyrinth[/i] is a system of $2024$ caves and $2023$ non-intersecting (bidirectional) corridors, each of which connects exactly two caves, where each pair of caves is connected through some sequence of corridors. Initially, Erik is standing in a corridor connecting some two caves. In a move, he can walk through one of the caves to another corridor that connects that cave to a third cave. However, when doing so, the corridor he was just in will magically disappear and get replaced by a new one connecting the end of his new corridor to the beginning of his old one (i.e., if Erik was in a corridor connecting caves $a$ and $b$ and he walked through cave $b$ into a corridor that connects caves $b$ and $c$, then the corridor between caves $a$ and $b$ will disappear and a new corridor between caves $a$ and $c$ will appear). Since Erik likes designing labyrinths and has a specific layout in mind for his next one, he is wondering whether he can transform the labyrinth into that layout using these moves. Prove that this is in fact possible, regardless of the original layout and his starting position there.

2017 Czech-Polish-Slovak Match, 2

Each of the ${4n^2}$ unit squares of a ${2n \times 2n}$ board ${(n \ge 1) }$ has been colored blue or red. A set of four different unit squares of the board is called [i]pretty [/i]if these squares can be labeled ${A,B,C,D}$ in such a way that ${A}$ and ${B}$ lie in the same row, ${C}$ and ${D}$ lie in the same row, ${A}$ and ${C}$ lie in the same column, ${B}$ and ${D}$ lie in the same column, ${A}$ and ${D}$ are blue, and ${B}$ and ${C}$ are red. Determine the largest possible number of different [i]pretty [/i]sets on such a board. (Poland)

2003 All-Russian Olympiad Regional Round, 8.5

Numbers from$ 1$ to $8$ were written at the vertices of the cube, and on each edge the absolute value of the difference between the numbers at its ends.. What is the smallest number of different numbers that can be written on the edges?

1988 IMO Longlists, 68

In a group of $n$ people, each one knows exactly three others. They are seated around a table. We say that the seating is $perfect$ if everyone knows the two sitting by their sides. Show that, if there is a perfect seating $S$ for the group, then there is always another perfect seating which cannot be obtained from $S$ by rotation or reflection.

2020 SMO, 2

Adam has a single stack of $3 \cdot 2^n$ rocks, where $n$ is a nonnegative integer. Each move, Adam can either split an existing stack into two new stacks whose sizes differ by $0$ or $1$, or he can combine two existing stacks into one new stack. Adam keeps performing such moves until he eventually gets at least one stack with $2^n$ rocks. Find, with proof, the minimum possible number of times Adam could have combined two stacks. [i]Proposed by Anthony Wang[/i]

2020 IMO Shortlist, C8

Players $A$ and $B$ play a game on a blackboard that initially contains 2020 copies of the number 1 . In every round, player $A$ erases two numbers $x$ and $y$ from the blackboard, and then player $B$ writes one of the numbers $x+y$ and $|x-y|$ on the blackboard. The game terminates as soon as, at the end of some round, one of the following holds: [list] [*] $(1)$ one of the numbers on the blackboard is larger than the sum of all other numbers; [*] $(2)$ there are only zeros on the blackboard. [/list] Player $B$ must then give as many cookies to player $A$ as there are numbers on the blackboard. Player $A$ wants to get as many cookies as possible, whereas player $B$ wants to give as few as possible. Determine the number of cookies that $A$ receives if both players play optimally.

2005 MOP Homework, 1

Two rooks on a chessboard are said to be attacking each other if they are placed in the same row or column of the board. (a) There are eight rooks on a chessboard, none of them attacks any other. Prove that there is an even number of rooks on black fields. (b) How many ways can eight mutually non-attacking rooks be placed on the 9 £ 9 chessboard so that all eight rooks are on squares of the same color.

2014 France Team Selection Test, 1

Let $n$ be an positive integer. Find the smallest integer $k$ with the following property; Given any real numbers $a_1 , \cdots , a_d $ such that $a_1 + a_2 + \cdots + a_d = n$ and $0 \le a_i \le 1$ for $i=1,2,\cdots ,d$, it is possible to partition these numbers into $k$ groups (some of which may be empty) such that the sum of the numbers in each group is at most $1$.

2020 OMMock - Mexico National Olympiad Mock Exam, 3

Let $n$ be a fixed positive integer. Oriol has $n$ cards, each of them with a $0$ written on one side and $1$ on the other. We place these cards in line, some face up and some face down (possibly all on the same side). We begin the following process consisting of $n$ steps: 1) At the first step, Oriol flips the first card 2) At the second step, Oriol flips the first card and second card . . . n) At the last step Oriol flips all the cards Let $s_0, s_1, s_2, \dots, s_n$ be the sum of the numbers seen in the cards at the beggining, after the first step, after the second step, $\dots$ after the last step, respectively. a) Find the greatest integer $k$ such that, no matter the initial card configuration, there exists at least $k$ distinct numbers between $s_0, s_1, \dots, s_n$. b) Find all positive integers $m$ such that, for each initial card configuration, there exists an index $r$ such that $s_r = m$. [i]Proposed by Dorlir Ahmeti[/i]

2009 JBMO TST - Macedonia, 4

In every $1\times1$ cell of a rectangle board a natural number is written. In one step it is allowed the numbers written in every cell of arbitrary chosen row, to be doubled, or the numbers written in the cells of the arbitrary chosen column to be decreased by 1. Will after final number of steps all the numbers on the board be $0$?

KoMaL A Problems 2017/2018, A. 711

For which pairs $(m,n)$ does there exist an injective function $f:\mathbb{R}^2\to\mathbb{R}^2$ under which the image of every regular $m$-gon is a regular $n$-gon. (Note that $m,n\geq 3$, and that by a regular $N$-gon we mean the union of the boundary segments, not the closed polygonal region.) [i]Proposed by Sutanay Bhattacharya, Bishnupur, India[/i]

2008 India Regional Mathematical Olympiad, 6

Find the number of all integer-sided [i]isosceles obtuse-angled[/i] triangles with perimeter $ 2008$. [16 points out of 100 for the 6 problems]

2022 Bangladesh Mathematical Olympiad, 4

Pratyya and Payel have a number each, $n$ and $m$ respectively, where $n>m.$ Everyday, Pratyya multiplies his number by $2$ and then subtracts $2$ from it, and Payel multiplies his number by $2$ and then add $2$ to it. In other words, on the first day their numbers will be $(2n-2)$ and $(2m+2)$ respectively. Find minimum integer $x$ with proof such that if $n-m\geq x,$ then Pratyya's number will be larger than Payel's number everyday.

2022 Kyiv City MO Round 1, Problem 5

$n\ge 2$ teams participated in an underwater polo tournament, each two teams played exactly once against each other. A team receives $2, 1, 0$ points for a win, draw, and loss correspondingly. It turned out that all teams got distinct numbers of points. In the final standings, the teams were ordered by the total number of points. A few days later, organizers realized that the results in the final standings were wrong due to technical issues: in fact, each match that ended with a draw according to them in fact had a winner, and each match with a winner in fact ended with a draw. It turned out that all teams still had distinct number of points! They corrected the standings and ordered them by the total number of points. For which $n$ could the correct order turn out to be the reversed initial order? [i](Proposed by Fedir Yudin)[/i]

2021 Israel TST, 2

Given 10 light switches, each can be in two states: on and off. For each pair of switches there is a light bulb which is on if and only if when both switches are on (45 bulbs in total). The bulbs and the switches are unmarked so it is unclear which switches correspond to which bulb. In the beginning all switches are off. How many flips are needed to find out regarding all bulbs which switches are connected to it? On each step you can flip precisely one switch

2023 Brazil Team Selection Test, 1

Let $n \geq 5$ be an integer. Consider $n$ squares with side lengths $1, 2, \dots , n$, respectively. The squares are arranged in the plane with their sides parallel to the $x$ and $y$ axes. Suppose that no two squares touch, except possibly at their vertices. Show that it is possible to arrange these squares in a way such that every square touches exactly two other squares.

1988 IMO Shortlist, 21

Forty-nine students solve a set of 3 problems. The score for each problem is a whole number of points from 0 to 7. Prove that there exist two students $ A$ and $ B$ such that, for each problem, $ A$ will score at least as many points as $ B.$

2002 Bulgaria National Olympiad, 3

Given are $n^2$ points in the plane, such that no three of them are collinear, where $n \geq 4$ is the positive integer of the form $3k+1$. What is the minimal number of connecting segments among the points, such that for each $n$-plet of points we can find four points, which are all connected to each other? [i]Proposed by Alexander Ivanov and Emil Kolev[/i]

2003 Denmark MO - Mohr Contest, 5

For which natural numbers $n\ge 2$ can the numbers from $1$ to $16$ be lined up in a square scheme so that the four row sums and the four column sums are all mutually different and divisible by $n$?