Found problems: 14842
1995 Taiwan National Olympiad, 6
Let $a,b,c,d$ are integers such that $(a,b)=(c,d)=1$ and $ad-bc=k>0$. Prove that there are exactly $k$ pairs $(x_{1},x_{2})$ of rational numbers with $0\leq x_{1},x_{2}<1$ for which both $ax_{1}+bx_{2},cx_{1}+dx_{2}$ are integers.
2018 lberoAmerican, 5
Let $n$ be a positive integer. For a permutation $a_1, a_2, \dots, a_n$ of the numbers $1, 2, \dots, n$ we define
$$b_k = \min_{1 \leq i \leq k} a_i + \max_{1 \leq j \leq k} a_j$$
We say that the permutation $a_1, a_2, \dots, a_n$ is [i]guadiana[/i] if the sequence $b_1, b_2, \dots, b_n$ does not contain two consecutive equal terms. How many guadiana permutations exist?
2007 Postal Coaching, 5
There are $N$ points in the plane such that the [b]total number[/b] of pairwise distances of these $N$ points is at most $n$. Prove that $N \le (n + 1)^2$.
2005 Gheorghe Vranceanu, 3
Prove by the method of induction that:
[b]a)[/b] $ a!b! $ divides $ (a+b)! , $ for any natural numbers $ a,b. $
[b]b)[/b] $ p $ divides $ (-1)^{k+1} +\binom{p-1}{k} , $ for any odd primes $ p $ and $ k\in\{ 0,1,\ldots ,p-1\} . $
1990 Tournament Of Towns, (262) 6
There are some ink-blots on a white paper square with side length $a$. The area of each blot is not greater than $1$ and every line parallel to any one of the sides of the square intersects no more than one blot. Prove that the total area of the blots is not greater than $a$.
(A. Razborov, Moscow)
2021 XVII International Zhautykov Olympiad, #5
On a party with $99$ guests, hosts Ann and Bob play a game (the hosts are not regarded as guests). There are $99$ chairs arranged in a circle; initially, all guests hang around those chairs. The hosts take turns alternately. By a turn, a host orders any standing guest to sit on an unoccupied chair $c$. If some chair adjacent to $c$ is already occupied, the same host orders one guest on such chair to stand up (if both chairs adjacent to $c$ are occupied, the host chooses exactly one of them). All orders are carried out immediately. Ann makes the first move; her goal is to fulfill, after some move of hers, that at least $k$ chairs are occupied. Determine the largest $k$ for which Ann can reach the goal, regardless of Bob's play.
2009 Italy TST, 1
Let $n,k$ be positive integers such that $n\ge k$. $n$ lamps are placed on a circle, which are all off. In any step we can change the state of $k$ consecutive lamps. In the following three cases, how many states of lamps are there in all $2^n$ possible states that can be obtained from the initial state by a certain series of operations?
i)$k$ is a prime number greater than $2$;
ii) $k$ is odd;
iii) $k$ is even.
1997 IberoAmerican, 1
Let $n$ be a positive integer. Consider the sum $x_1y_1 + x_2y_2 +\cdots + x_ny_n$, where that values of the variables $x_1, x_2,\ldots, x_n, y_1, y_2,\ldots, y_n$ are either 0 or 1.
Let $I(n)$ be the number of 2$n$-tuples $(x_1, x_2,\ldots, x_n, y_1, y_2,\ldots, y_n)$ such that the sum of the number is odd, and let $P(n)$ be the number of 2$n$-tuples $(x_1, x_2,\ldots, x_n, y_1, y_2,\ldots, y_n)$ such that the sum is an even number. Show that: \[ \frac{P(n)}{I(n)}=\frac{2^n+1}{2^n-1} \]
2007 IberoAmerican, 6
Let $ \mathcal{F}$ be a family of hexagons $ H$ satisfying the following properties:
i) $ H$ has parallel opposite sides.
ii) Any 3 vertices of $ H$ can be covered with a strip of width 1.
Determine the least $ \ell\in\mathbb{R}$ such that every hexagon belonging to $ \mathcal{F}$ can be covered with a strip of width $ \ell$.
Note: A strip is the area bounded by two parallel lines separated by a distance $ \ell$. The lines belong to the strip, too.
2010 ELMO Shortlist, 7
The game of circulate is played with a deck of $kn$ cards each with a number in $1,2,\ldots,n$ such that there are $k$ cards with each number. First, $n$ piles numbered $1,2,\ldots,n$ of $k$ cards each are dealt out face down. The player then flips over a card from pile $1$, places that card face up at the bottom of the pile, then next flips over a card from the pile whose number matches the number on the card just flipped. The player repeats this until he reaches a pile in which every card has already been flipped and wins if at that point every card has been flipped. Hamster has grown tired of losing every time, so he decides to cheat. He looks at the piles beforehand and rearranges the $k$ cards in each pile as he pleases. When can Hamster perform this procedure such that he will win the game?
[i]Brian Hamrick.[/i]
2017 Abels Math Contest (Norwegian MO) Final, 3a
Nils has a telephone number with eight different digits.
He has made $28$ cards with statements of the type “The digit $a$ occurs earlier than the digit $b$ in my telephone number” – one for each pair of digits appearing in his number.
How many cards can Nils show you without revealing his number?
2012 Dutch BxMO/EGMO TST, 5
Let $A$ be a set of positive integers having the following property:
for each positive integer $n$ exactly one of the three numbers $n, 2n$ and $3n$ is an element of $A$.
Furthermore, it is given that $2 \in A$. Prove that $13824 \notin A$.
2023 Harvard-MIT Mathematics Tournament, 9
There are $100$ people standing in a line from left to right. Half of them are randomly chosen to face right (with all ${100 \choose 50}$ possible choices being equally likely), and the others face left. Then, while there is a pair of people who are facing each other and have no one between them, the leftmost such pair leaves the line. Compute the expected number of people remaining once this process terminates.
VMEO IV 2015, 12.4
Six mathematician sit around a round table. Each of them has a number and they do the following transformation: Each time, two mathematician sitting next to each other is chosen, they will add $1$ to their own number. Is it possible to make all the six numbers equal if the initial numbers are
a) 6,5,4,3,2,1
b) 7,5,3,2,1,4
2012 Middle European Mathematical Olympiad, 4
Let $ p>2 $ be a prime number. For any permutation $ \pi = ( \pi(1) , \pi(2) , \cdots , \pi(p) ) $ of the set $ S = \{ 1, 2, \cdots , p \} $, let $ f( \pi ) $ denote the number of multiples of $ p $ among the following $ p $ numbers:
\[ \pi(1) , \pi(1) + \pi(2) , \cdots , \pi(1) + \pi(2) + \cdots + \pi(p) \]
Determine the average value of $ f( \pi) $ taken over all permutations $ \pi $ of $ S $.
2018 Iran Team Selection Test, 2
Mojtaba and Hooman are playing a game. Initially Mojtaba draws $2018$ vectors with zero sum. Then in each turn, starting with Mojtaba, the player takes a vector and puts it on the plane. After the first move, the players must put their vector next to the previous vector (the beginning of the vector must lie on the end of the previous vector).
At last, there will be a closed polygon. If this polygon is not self-intersecting, Mojtaba wins. Otherwise Hooman. Who has the winning strategy?
[i]Proposed by Mahyar Sefidgaran, Jafar Namdar [/i]
2008 May Olympiad, 5
On a $16 x 16$ board, $25$ coins are placed, as in the figure. It is allowed to select $8$ rows and $8$ columns and remove from the board all the coins that are in those $16$ lines. Determine if it is possible to remove all coins from the board.
[img]https://cdn.artofproblemsolving.com/attachments/1/5/e2c7379a6f47e2e8b8c9b989b85b96454a38e1.gif[/img]
If the answer is yes, indicate the $8$ rows and $8$ columns selected, and if no, explain why.
2009 Tournament Of Towns, 1
There are two numbers on a board, $1/2009$ and $1/2008$. Alex and Ben play the following game. At each move, Alex names a number $x$ (of his choice), while Ben responds by increasing one of the numbers on the board (of his choice) by $x$. Alex wins if at some moment one of the numbers on the board becomes $1$. Can Alex win (no matter how Ben plays)?
1993 IMO Shortlist, 5
On an infinite chessboard, a solitaire game is played as follows: at the start, we have $n^2$ pieces occupying a square of side $n.$ The only allowed move is to jump over an occupied square to an unoccupied one, and the piece which has been jumped over is removed. For which $n$ can the game end with only one piece remaining on the board?
1980 Tournament Of Towns, (005) 5
A finite set of line segments, of total length $18$, belongs to a square of unit side length (we assume that the square includes its boundary and that a line segment includes its end points). The line segments are parallel to the sides of the square and may intersect one another. Prove that among the regions into which the square is divided by the line segments, at least one of these must have area not less than $0.01$.
(A Berzinsh, Riga)
2002 Tuymaada Olympiad, 6
In the cells of the table $ 100 \times100 $ are placed in pairs different numbers. Every minute each of the numbers changes to the largest of the numbers in the adjacent cells on the side. Can after $4$ hours all the numbers in the table be the same?
2001 IMO Shortlist, 2
Let $n$ be an odd integer greater than 1 and let $c_1, c_2, \ldots, c_n$ be integers. For each permutation $a = (a_1, a_2, \ldots, a_n)$ of $\{1,2,\ldots,n\}$, define $S(a) = \sum_{i=1}^n c_i a_i$. Prove that there exist permutations $a \neq b$ of $\{1,2,\ldots,n\}$ such that $n!$ is a divisor of $S(a)-S(b)$.
2019 Harvard-MIT Mathematics Tournament, 7
In an election for the Peer Pressure High School student council president, there are 2019 voters and two candidates Alice and Celia (who are voters themselves). At the beginning, Alice and Celia both vote for themselves, and Alice's boyfriend Bob votes for Alice as well. Then one by one, each of the remaining 2016 voters votes for a candidate randomly, with probabilities proportional to the current number of the respective candidate's votes. For example, the first undecided voter David has a $\tfrac{2}{3}$ probability of voting for Alice and a $\tfrac{1}{3}$ probability of voting for Celia.
What is the probability that Alice wins the election (by having more votes than Celia)?
2011 ELMO Problems, 2
Wanda the Worm likes to eat Pascal's triangle. One day, she starts at the top of the triangle and eats $\textstyle\binom{0}{0}=1$. Each move, she travels to an adjacent positive integer and eats it, but she can never return to a spot that she has previously eaten. If Wanda can never eat numbers $a,b,c$ such that $a+b=c$, prove that it is possible for her to eat 100,000 numbers in the first 2011 rows given that she is not restricted to traveling only in the first 2011 rows.
(Here, the $n+1$st row of Pascal's triangle consists of entries of the form $\textstyle\binom{n}{k}$ for integers $0\le k\le n$. Thus, the entry $\textstyle\binom{n}{k}$ is considered adjacent to the entries $\textstyle\binom{n-1}{k-1}$, $\textstyle\binom{n-1}{k}$, $\textstyle\binom{n}{k-1}$, $\textstyle\binom{n}{k+1}$, $\textstyle\binom{n+1}{k}$, $\textstyle\binom{n+1}{k+1}$.)
[i]Linus Hamilton.[/i]
2020 CIIM, 6
For a set $A$, we define $A + A = \{a + b: a, b \in A \}$. Determine whether there exists a set $A$ of positive integers such that $$\sum_{a \in A} \frac{1}{a} = +\infty \quad \text{and} \quad \lim_{n \rightarrow +\infty} \frac{|(A+A) \cap \{1,2,\cdots,n \}|}{n}=0.$$
[hide=Note]Google translated from [url=http://ciim.uan.edu.co/ciim-2020-pruebas-virtuales/pruebas-virtuales]http://ciim.uan.edu.co/ciim-2020-pruebas-virtuales/pruebas-virtuales[/url][/hide]