This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2005 Olympic Revenge, 5

Find all sets X of points in a plane, not all collinear, such that: For any two distinct circumferences, each contains three points of X, its intersection points are points of X.

2020 CMIMC Combinatorics & Computer Science, 2

David is taking a true/false exam with $9$ questions. Unfortunately, he doesn’t know the answer to any of the questions, but he does know that exactly $5$ of the answers are True. In accordance with this, David guesses the answers to all $9$ questions, making sure that exactly $5$ of his answers are True. What is the probability he answers at least $5$ questions correctly?

2007 China National Olympiad, 3

Let $a_1, a_2, \ldots , a_{11}$ be 11 pairwise distinct positive integer with sum less than 2007. Let S be the sequence of $1,2, \ldots ,2007$. Define an [b]operation[/b] to be 22 consecutive applications of the following steps on the sequence $S$: on $i$-th step, choose a number from the sequense $S$ at random, say $x$. If $1 \leq i \leq 11$, replace $x$ with $x+a_i$ ; if $12 \leq i \leq 22$, replace $x$ with $x-a_{i-11}$ . If the result of [b]operation[/b] on the sequence $S$ is an odd permutation of $\{1, 2, \ldots , 2007\}$, it is an [b]odd operation[/b]; if the result of [b]operation[/b] on the sequence $S$ is an even permutation of $\{1, 2, \ldots , 2007\}$, it is an [b]even operation[/b]. Which is larger, the number of odd operation or the number of even permutation? And by how many? Here $\{x_1, x_2, \ldots , x_{2007}\}$ is an even permutation of $\{1, 2, \ldots ,2007\}$ if the product $\prod_{i > j} (x_i - x_j)$ is positive, and an odd one otherwise.

2021 Bangladesh Mathematical Olympiad, Problem 9

A positive integer $n$ is called nice if it has at least $3$ proper divisors and it is equal to the sum of its three largest proper divisors. For example, $6$ is nice because its largest proper divisors are $3,2,1$ and $6=3+2+1$. Find the number of nice integers not greater than $3000$.

2004 Germany Team Selection Test, 3

Let $n \geq 2$ be a natural number, and let $\left( a_{1};\;a_{2};\;...;\;a_{n}\right)$ be a permutation of $\left(1;\;2;\;...;\;n\right)$. For any integer $k$ with $1 \leq k \leq n$, we place $a_k$ raisins on the position $k$ of the real number axis. [The real number axis is the $x$-axis of a Cartesian coordinate system.] Now, we place three children A, B, C on the positions $x_A$, $x_B$, $x_C$, each of the numbers $x_A$, $x_B$, $x_C$ being an element of $\left\{1;\;2;\;...;\;n\right\}$. [It is not forbidden to place different children on the same place!] For any $k$, the $a_k$ raisins placed on the position $k$ are equally handed out to those children whose positions are next to $k$. [So, if there is only one child lying next to $k$, then he gets the raisin. If there are two children lying next to $k$ (either both on the same position or symmetric with respect to $k$), then each of them gets one half of the raisin. Etc..] After all raisins are distributed, a child is unhappy if he could have received more raisins than he actually has received if he had moved to another place (while the other children would rest on their places). For which $n$ does there exist a configuration $\left( a_{1};\;a_{2};\;...;\;a_{n}\right)$ and numbers $x_A$, $x_B$, $x_C$, such that all three children are happy?

2012 Tournament of Towns, 2

Chip and Dale play the following game. Chip starts by splitting $1001$ nuts between three piles, so Dale can see it. In response, Dale chooses some number $N$ from $1$ to $1001$. Then Chip moves nuts from the piles he prepared to a new (fourth) pile until there will be exactly $N$ nuts in any one or more piles. When Chip accomplishes his task, Dale gets an exact amount of nuts that Chip moved. What is the maximal number of nuts that Dale can get for sure, no matter how Chip acts? (Naturally, Dale wants to get as many nuts as possible, while Chip wants to lose as little as possible).

1999 Baltic Way, 10

May the points of a disc of radius $1$ (including its circumference) be partitioned into three subsets in such a way that no subset contains two points separated by a distance $1$?

2011 Rioplatense Mathematical Olympiad, Level 3, 3

Let $M$ be a map made of several cities linked to each other by flights. We say that there is a route between two cities if there is a nonstop flight linking these two cities. For each city to the $M$ denote by $M_a$ the map formed by the cities that have a route to and routes linking these cities together ( to not part of $M_a$). The cities of $M_a$ are divided into two sets so that the number of routes linking cities of different sets is maximum; we call this number the cut of $M_a$. Suppose that for every cut of $M_a$ , it is strictly less than two thirds of the number of routes $M_a$ . Show that for any coloring of the $M$ routes with two colors there are three cities of $M$ joined by three routes of the same color.

1999 All-Russian Olympiad, 4

A frog is placed on each cell of a $n \times n$ square inside an infinite chessboard (so initially there are a total of $n \times n$ frogs). Each move consists of a frog $A$ jumping over a frog $B$ adjacent to it with $A$ landing in the next cell and $B$ disappearing (adjacent means two cells sharing a side). Prove that at least $ \left[\frac{n^2}{3}\right]$ moves are needed to reach a configuration where no more moves are possible.

2015 Cuba MO, 2

In a certain country there are 9 cities and two airline companies: AeroSol and AeroLuna. Between each pair of cities there are flights from one and only one of them. the two companies. Furthermore, for any triple of cities $X$, $Y$,$ Z$ σt least one of the flights between them is served by AeroLuna. It is possible to find $4$ cities such that all flights between them be served by AeroLuna?

2023 Bangladesh Mathematical Olympiad, P10

Joy has a square board of size $n \times n$. At every step, he colours a cell of the board. He cannot colour any cell more than once. He also counts points while colouring the cells. At first, he has $0$ points. Every step, after colouring a cell $c$, he takes the largest possible set $S$ that creates a "$+$" sign where all cells are coloured and $c$ lies in the centre. Then, he gets the size of set $S$ as points. After colouring the whole $n \times n$ board, what is the maximum possible amount of points he can get?

1993 Romania Team Selection Test, 4

For each integer $n > 3$ find all quadruples $(n_1,n_2,n_3,n_4)$ of positive integers with $n_1 +n_2 +n_3 +n_4 = n$ which maximize the expression $$\frac{n!}{n_1!n_2!n_3!n_4!}2^{ {n_1 \choose 2}+{n_2 \choose 2}+{n_3 \choose 2}+{n_4 \choose 2}+n_1n_2+n_2n_3+n_3n_4}$$

ABMC Speed Rounds, 2023

[i]25 problems for 30 minutes[/i] [b]p1.[/b] Compute $2^2 + 0 \cdot 0 + 2^2 + 3^3$. [b]p2.[/b] How many total letters (not necessarily distinct) are there in the names Jerry, Justin, Jackie, Jason, and Jeffrey? [b]p3.[/b] What is the remainder when $20232023$ is divided by $50$? [b]p4.[/b] Let $ABCD$ be a square. The fraction of the area of $ABCD$ that is the area of the intersection of triangles $ABD$ and $ABC$ can be expressed as $\frac{a}{b}$ , where $a$ and $b$ relatively prime positive integers. Find $a + b$. [b]p5.[/b] Raymond is playing basketball. He makes a total of $15$ shots, all of which are either worth $2$ or $3$ points. Given he scored a total of $40$ points, how many $2$-point shots did he make? [b]p6.[/b] If a fair coin is flipped $4$ times, the probability that it lands on heads more often than tails is $\frac{a}{b}$ , where $a$ and $b$ relatively prime positive integers. Find $a + b$. [b]p7.[/b] What is the sum of the perfect square divisors of $640$? [b]p8.[/b] A regular hexagon and an equilateral triangle have the same perimeter. The ratio of the area between the hexagon and equilateral triangle can be expressed in the form $\frac{a}{b}$ , where $a$ and $b$ are relatively prime positive integers. Find $a + b$. [b]p9.[/b] If a cylinder has volume $1024\pi$, radius of $r$ and height $h$, how many ordered pairs of integers $(r, h)$ are possible? [b]p10.[/b] Pump $A$ can fill up a balloon in $3$ hours, while pump $B$ can fill up a balloon in $5$ hours. Pump $A$ starts filling up a balloon at $12:00$ PM, and pump $B$ is added alongside pump $A$ at a later time. If the balloon is completely filled at $2:00$ PM, how many minutes after $12:00$ PM was Pump $B$ added? [b]p11.[/b] For some positive integer $k$, the product $81 \cdot k$ has $20$ factors. Find the smallest possible value of $k$. [b]p12.[/b] Two people wish to sit in a row of fifty chairs. How many ways can they sit in the chairs if they do not want to sit directly next to each other and they do not want to sit with exactly one empty chair between them? [b]p13.[/b] Let $\vartriangle ABC$ be an equilateral triangle with side length $2$ and $M$ be the midpoint of $BC$. Let $P$ be a point in the same plane such that $2PM = BC$. The minimum value of $AP$ can be expressed as $\sqrt{a}-b$, where $a$ and $b$ are positive integers such that $a$ is not divisible by any perfect square aside from $1$. Find $a + b$. [b]p14.[/b] What are the $2022$nd to $2024$th digits after the decimal point in the decimal expansion of $\frac{1}{27}$ , expressed as a $3$ digit number in that order (i.e the $2022$nd digit is the hundreds digit, $2023$rd digit is the tens digit, and $2024$th digit is the ones digit)? [b]p15.[/b] After combining like terms, how many terms are in the expansion of $(xyz+xy+yz+xz+x+y+z)^{20}$? [b]p16.[/b] Let $ABCD$ be a trapezoid with $AB \parallel CD$ where $AB > CD$, $\angle B = 90^o$, and $BC = 12$. A line $k$ is dropped from $A$, perpendicular to line $CD$, and another line $\ell$ is dropped from $C$, perpendicular to line $AD$. $k$ and $\ell$ intersect at $X$. If $\vartriangle AXC$ is an equilateral triangle, the area of $ABCD$ can be written as $m\sqrt{n}$, where $m$ and $n$ are positive integers such that $n$ is not divisible by any perfect square aside from $1$. Find $m + n$. [b]p17.[/b] If real numbers $x$ and $y$ satisfy $2x^2 + y^2 = 8x$, maximize the expression $x^2 + y^2 + 4x$. [b]p18.[/b] Let $f(x)$ be a monic quadratic polynomial with nonzero real coefficients. Given that the minimum value of $f(x)$ is one of the roots of $f(x)$, and that $f(2022) = 1$, there are two possible values of $f(2023)$. Find the larger of these two values. [b]p19.[/b] I am thinking of a positive integer. After realizing that it is four more than a multiple of $3$, four less than a multiple of $4$, four more than a multiple of 5, and four less than a multiple of $7$, I forgot my number. What is the smallest possible value of my number? [b]p20.[/b] How many ways can Aston, Bryan, Cindy, Daniel, and Evan occupy a row of $14$ chairs such that none of them are sitting next to each other? [b]p21.[/b] Let $x$ be a positive real number. The minimum value of $\frac{1}{x^2} +\sqrt{x}$ can be expressed in the form \frac{a}{b^{(c/d)}} , where $a$, $b$, $c$, $d$ are all positive integers, $a$ and $b$ are relatively prime, $c$ and $d$ are relatively prime, and $b$ is not divisible by any perfect square. Find $a + b + c + d$. [b]p22.[/b] For all $x > 0$, the function $f(x)$ is defined as $\lfloor x \rfloor \cdot (x + \{x\})$. There are $24$ possible $x$ such that $f(x)$ is an integer between $2000$ and $2023$, inclusive. If the sum of these $24$ numbers equals $N$, then find $\lfloor N \rfloor$. Note: Recall that $\lfloor x \rfloor$ is the greatest integer less than or equal to $x$, called the floor function. Also, $\{x\}$ is defined as $x - \lfloor x \rfloor$, called the fractional part function. [b]p23.[/b] Let $ABCD$ be a rectangle with $AD = 1$. Let $P$ be a point on diagonal $\overline{AC}$, and let $\omega$ and $\xi$ be the circumcircles of $\vartriangle APB$ and $\vartriangle CPD$, respectively. Line $\overleftrightarrow{AD}$ is extended, intersecting $\omega$ at $X$, and $\xi$ at $Y$ . If $AX = 5$ and $DY = 2$, find $[ABCD]^2$. Note: $[ABCD]$ denotes the area of the polygon $ABCD$. [b]p24.[/b] Alice writes all of the three-digit numbers on a blackboard (it’s a pretty big blackboard). Let $X_a$ be the set of three-digit numbers containing a somewhere in its representation, where a is a string of digits. (For example, $X_{12}$ would include $12$, $121$, $312$, etc.) If Bob then picks a value of $a$ at random so $0 \le a \le 999$, the expected number of elements in $X_a$ can be expressed as $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find$ m + n$. [b]p25.[/b] Let $f(x) = x^5 + 2x^4 - 2x^3 + 4x^2 + 5x + 6$ and $g(x) = x^4 - x^3 + x^2 - x + 1$. If $a$, $b$, $c$, $d$ are the roots of $g(x)$, then find $f(a) + f(b) + f(c) + f(d)$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2021 Francophone Mathematical Olympiad, 3

Every point in the plane was colored in red or blue. Prove that one the two following statements is true: $\bullet$ there exist two red points at distance $1$ from each other; $\bullet$ there exist four blue points $B_1$, $B_2$, $B_3$, $B_4$ such that the points $B_i$ and $B_j$ are at distance $|i - j|$ from each other, for all integers $i $ and $j$ such as $1 \le i \le 4$ and $1 \le j \le 4$.

1989 IMO Longlists, 69

Let $ k$ and $ s$ be positive integers. For sets of real numbers $ \{\alpha_1, \alpha_2, \ldots , \alpha_s\}$ and $ \{\beta_1, \beta_2, \ldots, \beta_s\}$ that satisfy \[ \sum^s_{i\equal{}1} \alpha^j_i \equal{} \sum^s_{i\equal{}1} \beta^j_i \quad \forall j \equal{} \{1,2 \ldots, k\}\] we write \[ \{\alpha_1, \alpha_2, \ldots , \alpha_s\} \overset{k}{\equal{}} \{\beta_1, \beta_2, \ldots , \beta_s\}.\] Prove that if \[ \{\alpha_1, \alpha_2, \ldots , \alpha_s\} \overset{k}{\equal{}} \{\beta_1, \beta_2, \ldots , \beta_s\}\] and $ s \leq k,$ then there exists a permutation $ \pi$ of $ \{1, 2, \ldots , s\}$ such that \[ \beta_i \equal{} \alpha_{\pi(i)} \quad \forall i \equal{} 1,2, \ldots, s.\]

2015 Bundeswettbewerb Mathematik Germany, 1

Let $a,b$ be positive even integers. A rectangle with side lengths $a$ and $b$ is split into $a \cdot b$ unit squares. Anja and Bernd take turns and in each turn they color a square that is made of those unit squares. The person that can't color anymore, loses. Anja starts. Find all pairs $(a,b)$, such that she can win for sure. [b]Extension:[/b] Solve the problem for positive integers $a,b$ that don't necessarily have to be even. [b]Note:[/b] The [i]extension[/i] actually was proposed at first. But since this is a homework competition that goes over three months and some cases were weird, the problem was changed to even integers.

2023 China Team Selection Test, P24

Let $n$ be a positive integer. Initially, a $2n \times 2n$ grid has $k$ black cells and the rest white cells. The following two operations are allowed : (1) If a $2\times 2$ square has exactly three black cells, the fourth is changed to a black cell; (2) If there are exactly two black cells in a $2 \times 2$ square, the black cells are changed to white and white to black. Find the smallest positive integer $k$ such that for any configuration of the $2n \times 2n$ grid with $k$ black cells, all cells can be black after a finite number of operations.

1992 Kurschak Competition, 3

Consider finitely many points in the plane such that no three are collinear. Prove that we can paint the points with two colors such that there is no half-plane that contains exactly three points such that those three points have the same color.

2020 China Girls Math Olympiad, 8

Let $n$ be a given positive integer. Let $\mathbb{N}_+$ denote the set of all positive integers. Determine the number of all finite lists $(a_1,a_2,\cdots,a_m)$ such that: [b](1)[/b] $m\in \mathbb{N}_+$ and $a_1,a_2,\cdots,a_m\in \mathbb{N}_+$ and $a_1+a_2+\cdots+a_m=n$. [b](2)[/b] The number of all pairs of integers $(i,j)$ satisfying $1\leq i<j\leq m$ and $a_i>a_j$ is even. For example, when $n=4$, the number of all such lists $(a_1,a_2,\cdots,a_m)$ is $6$, and these lists are $(4),$ $(1,3),$ $(2,2),$ $(1,1,2),$ $(2,1,1),$ $(1,1,1,1)$.

2020 Iranian Our MO, 1

Find the maximum number of cells that can be coloured from a $4\times 3000$ board such that no tetromino is formed. [i]Proposed by Arian Zamani, Matin Yousefi[/i] [b]Rated 5[/b]

2010 Contests, 1

There are ten coins a line, which are indistinguishable. It is known that two of them are false and have consecutive positions on the line. For each set of positions, you may ask how many false coins it contains. Is it possible to identify the false coins by making only two of those questions, without knowing the answer to the first question before making the second?

Russian TST 2020, P3

There are 60 empty boxes $B_1,\ldots,B_{60}$ in a row on a table and an unlimited supply of pebbles. Given a positive integer $n$, Alice and Bob play the following game. In the first round, Alice takes $n$ pebbles and distributes them into the 60 boxes as she wishes. Each subsequent round consists of two steps: (a) Bob chooses an integer $k$ with $1\leq k\leq 59$ and splits the boxes into the two groups $B_1,\ldots,B_k$ and $B_{k+1},\ldots,B_{60}$. (b) Alice picks one of these two groups, adds one pebble to each box in that group, and removes one pebble from each box in the other group. Bob wins if, at the end of any round, some box contains no pebbles. Find the smallest $n$ such that Alice can prevent Bob from winning. [i]Czech Republic[/i]

2006 Thailand Mathematical Olympiad, 18

In May, the traffic police wants to select 10 days to patrol, but no two consecutive days can be selected. How many ways are there for the traffic police to select patrol days?

2006 Iran MO (3rd Round), 1

Let $A$ be a family of subsets of $\{1,2,\ldots,n\}$ such that no member of $A$ is contained in another. Sperner’s Theorem states that $|A|\leq{n\choose{\lfloor\frac{n}{2}\rfloor}}$. Find all the families for which the equality holds.

2023-24 IOQM India, 7

Unconventional dice are to be designed such that the six faces are marked with numbers from $1$ to $6$ with $1$ and $2$ appearing on opposite faces. Further, each face is colored either red or yellow with opposite faces always of the same color. Two dice are considered to have the same design if one of them can be rotated to obtain a dice that has the same numbers and colors on the corresponding faces as the other one. Find the number of distinct dice that can be designed.