This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2013 Iran MO (3rd Round), 4

We have constructed a rhombus by attaching two equal equilateral triangles. By putting $n-1$ points on all 3 sides of each triangle we have divided the sides to $n$ equal segments. By drawing line segements between correspounding points on each side of the triangles we have divided the rhombus into $2n^2$ equal triangles. We write the numbers $1,2,\dots,2n^2$ on these triangles in a way no number appears twice. On the common segment of each two triangles we write the positive difference of the numbers written on those triangles. Find the maximum sum of all numbers written on the segments. (25 points) [i]Proposed by Amirali Moinfar[/i]

1997 Croatia National Olympiad, Problem 4

An infinite sheet of paper is divided into equal squares, some of which are colored red. In each $2\times3$ rectangle, there are exactly two red squares. Now consider an arbitrary $9\times11$ rectangle. How many red squares does it contain? (The sides of all considered rectangles go along the grid lines.)

1995 Tournament Of Towns, (459) 4

Some points with integer coordinates in the plane are marked. It is known that no four of them lie on a circle. Show that there exists a circle of radius 1995 without any marked points inside. (AV Shapovelov)

2014 BMT Spring, 8

Annisa has $n$ distinct textbooks, where $n > 6$. She has a different ways to pick a group of $4$ books, b different ways to pick $5$ books and c different ways to pick $6$ books. If Annisa buys two more (distinct) textbooks, how many ways will she be able to pick a group of $6$ books?

2006 Pre-Preparation Course Examination, 7

Suppose that for every $n$ the number $m(n)$ is chosen such that $m(n)\ln(m(n))=n-\frac 12$. Show that $b_n$ is asymptotic to the following expression where $b_n$ is the $n-$th Bell number, that is the number of ways to partition $\{1,2,\ldots,n\}$: \[ \frac{m(n)^ne^{m(n)-n-\frac 12}}{\sqrt{\ln n}}. \] Two functions $f(n)$ and $g(n)$ are asymptotic to each other if $\lim_{n\rightarrow \infty}\frac{f(n)}{g(n)}=1$.

2004 Kazakhstan National Olympiad, 4

In some village there are $1000$ inhabitants. Every day, each of them shares the news they learned yesterday with all their friends. It is known that any news becomes known to all residents of the village. Prove that it is possible to select $90$ residents so that if you tell all of them at the same time some news, then in $10$ days it will become known to all residents of the village.

1999 Romania Team Selection Test, 16

Let $X$ be a set with $n$ elements, and let $A_{1}$, $A_{2}$, ..., $A_{m}$ be subsets of $X$ such that: 1) $|A_{i}|=3$ for every $i\in\left\{1,2,...,m\right\}$; 2) $|A_{i}\cap A_{j}|\leq 1$ for all $i,j\in\left\{1,2,...,m\right\}$ such that $i \neq j$. Prove that there exists a subset $A$ of $X$ such that $A$ has at least $\left[\sqrt{2n}\right]$ elements, and for every $i\in\left\{1,2,...,m\right\}$, the set $A$ does not contain $A_{i}$. [i]Alternative formulation.[/i] Let $X$ be a finite set with $n$ elements and $A_{1},A_{2},\ldots, A_{m}$ be three-elements subsets of $X$, such that $|A_{i}\cap A_{j}|\leq 1$, for every $i\neq j$. Prove that there exists $A\subseteq X$ with $|A|\geq \lfloor \sqrt{2n}\rfloor$, such that none of $A_{i}$'s is a subset of $A$.

2023 Bundeswettbewerb Mathematik, 4

Exactly $n$ chords (i.e. diagonals and edges) of a regular $2n$-gon are coloured red, satisfying the following two conditions: (1) Each of the $2n$ vertices occurs exactly once as the endpoint of a red chord. (2) No two red chords have the same length. For which positive integers $n \ge 2$ is this possible?

2022 Dutch BxMO TST, 5

In a fish shop with 28 kinds of fish, there are 28 fish sellers. In every seller, there exists only one type of each fish kind, depending on where it comes, Mediterranean or Black Sea. Each of the $k$ people gets exactly one fish from each seller and exactly one fish of each kind. For any two people, there exists a fish kind which they have different types of it (one Mediterranean, one Black Sea). What is the maximum possible number of $k$?

2016 Hanoi Open Mathematics Competitions, 2

Given an array of numbers $A = (672, 673, 674, ..., 2016)$ on table. Three arbitrary numbers $a,b,c \in A$ are step by step replaced by number $\frac13 min(a,b,c)$. After $672$ times, on the table there is only one number $m$, such that (A): $0 < m < 1$ (B): $m = 1$ (C): $1 < m < 2$ (D): $m = 2$ (E): None of the above.

2022 CMWMC, R5

[u]Set 5[/u] [b]p13.[/b] An equiangular $12$-gon has side lengths that alternate between $2$ and $\sqrt3$. Find the area of the circumscribed circle of this $12$-gon. [b]p14.[/b] For positive integers $n$, let $\sigma(n)$ denote the number of positive integer factors of $n$. Then $\sigma(17280) = \sigma (2^7 \cdot 3^3 \cdot 5)= 64$. Let $S$ be the set of factors $k$ of $17280$ such that $\sigma(k) = 32$. If $p$ is the product of the elements of $S$, find $\sigma(p)$. [b]p15.[/b] How many odd $3$-digit numbers have exactly four $1$’s in their binary (base $2$) representation? For example, $225_{10} = 11100001_2$ would be valid. PS. You should use hide for answers.

2021 Ukraine National Mathematical Olympiad, 1

Alexey and Bogdan play a game with two piles of stones. In the beginning, one of the piles contains $2021$ stones, and the second is empty. In one move, each of the guys has to pick up an even number of stones (more than zero) from an arbitrary pile, then transfer half of the stones taken to another pile, and the other half - to remove from the game. Loses the one who cannot make a move. Who will win this game if both strive to win, and Bogdan begins? (Oleksii Masalitin)

1985 Tournament Of Towns, (084) T5

Every member of a given sequence, beginning with the second , is equal to the sum of the preceding one and the sum of its digits . The first member equals $1$ . Is there, among the members of this sequence, a number equal to $123456$ ? (S. Fomin , Leningrad)

2011 Turkey Junior National Olympiad, 4

Each student chooses $1$ math problem and $1$ physics problem among $20$ math problems and $11$ physics problems. No same pair of problem is selected by two students. And at least one of the problems selected by any student is selected by at most one other student. At most how many students are there?

2007 Baltic Way, 10

We are given an $18\times 18$ table, all of whose cells may be black or white. Initially all the cells are coloured white. We may perform the following operation: choose one column or one row and change the colour of all cells in this column or row. Is it possible by repeating the operation to obtain a table with exactly $16$ black cells?

2001 Austrian-Polish Competition, 5

The fields of the $8\times 8$ chessboard are numbered from $1$ to $64$ in the following manner: For $i=1,2,\cdots,63$ the field numbered by $i+1$ can be reached from the field numbered by $i$ by one move of the knight. Let us choose positive real numbers $x_{1},x_{2},\cdots,x_{64}$. For each white field numbered by $i$ define the number $y_{i}=1+x_{i}^{2}-\sqrt[3]{x_{i-1}^{2}x_{i+1}}$ and for each black field numbered by $j$ define the number $y_{j}=1+x_{j}^{2}-\sqrt[3]{x_{j-1}x_{j+1}^{2}}$ where $x_{0}=x_{64}$ and $x_{1}=x_{65}$. Prove that \[\sum_{i=1}^{64}y_{i}\geq 48\]

2021 Greece JBMO TST, 2

Anna and Basilis play a game writing numbers on a board as follows: The two players play in turns and if in the board is written the positive integer $n$, the player whose turn is chooses a prime divisor $p$ of $n$ and writes the numbers $n+p$. In the board, is written at the start number $2$ and Anna plays first. The game is won by whom who shall be first able to write a number bigger or equal to $31$. Find who player has a winning strategy, that is who may writing the appropriate numbers may win the game no matter how the other player plays.

2004 Estonia Team Selection Test, 3

For which natural number $n$ is it possible to draw $n$ line segments between vertices of a regular $2n$-gon so that every vertex is an endpoint for exactly one segment and these segments have pairwise different lengths?

1989 Romania Team Selection Test, 5

A laticial cycle of length $n$ is a sequence of lattice points $(x_k, y_k)$, $k = 0, 1,\cdots, n$, such that $(x_0, y_0) = (x_n, y_n) = (0, 0)$ and $|x_{k+1} -x_{k}|+|y_{k+1} - y_{k}| = 1$ for each $k$. Prove that for all $n$, the number of latticial cycles of length $n$ is a perfect square.

2024 Assara - South Russian Girl's MO, 7

There is a chip in one of the squares on the checkered board. In one move, she can move either $1$ square to the right, or diagonally $1$ to the left and $1$ up, or $1$ to the left and $3$ down (see Fig.). The chip made $n$ moves and returned to the starting square. Prove that a) $n$ is divisible by $2$, b) $n$ is divisible by $8$. [i]K.A.Sukhov[/i]

2017 Taiwan TST Round 2, 1

There is a $2n\times 2n$ rectangular grid and a chair in each cell of the grid. Now, there are $2n^2$ pairs of couple are going to take seats. Define the distance of a pair of couple to be the sum of column difference and row difference between them. For example, if a pair of couple seating at $(3,3)$ and $(2,5)$ respectively, then the distance between them is $|3-2|+|3-5|=3$. Moreover, define the total distance to be the sum of the distance in each pair. Find the maximal total distance among all possibilities.

1997 Brazil Team Selection Test, Problem 2

Prove that any group of people can be divided into two disjoint groups $A$ and $B$ such that any member from $A$ has at least half of his acquaintances in $B$ and any member from $B$ has at least half of his acquaintances in $A$ (acquaintance is reciprocal).

1990 French Mathematical Olympiad, Problem 2

A game consists of pieces of the shape of a regular tetrahedron of side $1$. Each face of each piece is painted in one of $n$ colors, and by this, the faces of one piece are not necessarily painted in different colors. Determine the maximum possible number of pieces, no two of which are identical.

2007 Tournament Of Towns, 2

A convex figure $F$ is such that any equilateral triangle with side $1$ has a parallel translation that takes all its vertices to the boundary of $F$. Is $F$ necessarily a circle?

2004 Alexandru Myller, 1

Find the number of self-maps of a set of $ 5 $ elements having the property that the preimage of any element of this set has $ 2 $ elements at most. [i]Adrian Zanoschi[/i]