Found problems: 14842
2019 Middle European Mathematical Olympiad, 4
Prove that every integer from $1$ to $2019$ can be represented as an arithmetic expression consisting of up to $17$ symbols $2$ and an arbitrary number of additions, subtractions, multiplications, divisions and brackets. The $2$'s may not be used for any other operation, for example, to form multidigit numbers (such as $222$) or powers (such as $2^2$).
Valid examples: $$\left((2\times 2+2)\times 2-\frac{2}{2}\right)\times 2=22 \;\;, \;\; (2\times2\times 2-2)\times \left(2\times 2 +\frac{2+2+2}{2}\right)=42$$
[i]Proposed by Stephan Wagner, Austria[/i]
2015 239 Open Mathematical Olympiad, 5
Edges of a complete graph with $2m$ vertices are properly colored with $2m-1$ colors. It turned out that for any two colors all the edges colored in one of these two colors can be described as union of several $4$-cycles. Prove that $m$ is a power of $2$.
2019 BMT Spring, 12
$2019$ people (all of whom are perfect logicians), labeled from $1$ to $2019$, partake in a paintball duel. First, they decide to stand in a circle, in order, so that Person $1$ has Person $2$ to his left and person $2019$ to his right. Then, starting with Person $1$ and moving to the left, every person who has not been eliminated takes a turn shooting. On their turn, each person can choose to either shoot one non-eliminated person of his or her choice (which eliminates that person from the game), or deliberately miss. The last person standing wins. If, at any point, play goes around the circle once with no one getting eliminated (that is, if all the people playing decide to miss), then automatic paint sprayers will turn on, and end the game with everyone losing. Each person will, on his or her turn, always pick a move that leads to a win if possible, and, if there is still a choice in what move to make, will prefer shooting over missing, and shooting a person closer to his or her left over shooting someone farther from their left. What is the number of the person who wins this game? Put “$0$” if no one wins.
2004 Germany Team Selection Test, 3
Every point with integer coordinates in the plane is the center of a disk with radius $1/1000$.
(1) Prove that there exists an equilateral triangle whose vertices lie in different discs.
(2) Prove that every equilateral triangle with vertices in different discs has side-length greater than $96$.
[i]Radu Gologan, Romania[/i]
[hide="Remark"]
The "> 96" in [b](b)[/b] can be strengthened to "> 124". By the way, part [b](a)[/b] of this problem is the place where I used [url=http://mathlinks.ro/viewtopic.php?t=5537]the well-known "Dedekind" theorem[/url].
[/hide]
1955 Moscow Mathematical Olympiad, 287
a) The numbers $1, 2, . . . , 49$ are arranged in a square table as follows:
[img]https://cdn.artofproblemsolving.com/attachments/5/0/c2e350a6ad0ebb8c728affe0ebb70783baf913.png[/img]
Among these numbers we select an arbitrary number and delete from the table the row and the column which contain this number. We do the same with the remaining table of $36$ numbers, etc., $7$ times. Find the sum of the numbers selected.
b) The numbers $1, 2, . . . , k^2$ are arranged in a square table as follows:
[img]https://cdn.artofproblemsolving.com/attachments/2/d/28d60518952c3acddc303e427483211c42cd4a.png[/img]
Among these numbers we select an arbitrary number and delete from the table the row and the column which contain this number. We do the same with the remaining table of $(k - 1)^2$ numbers, etc., $k$ times. Find the sum of the numbers selected.
2021 Regional Olympiad of Mexico West, 6
Let $n$ be an integer greater than $3$. Show that it is possible to divide a square into $n^2 + 1$ or more disjointed rectangles and with sides parallel to those of the square so that any line parallel to one of the sides intersects at most the interior of $n$ rectangles.
Note: We say that two rectangles are [i]disjointed [/i] if they do not intersect or only intersect at their perimeters.
2004 Iran MO (3rd Round), 4
We have finite white and finite black points that for each 4 oints there is a line that white points and black points are at different sides of this line.Prove there is a line that all white points and black points are at different side of this line.
1980 Spain Mathematical Olympiad, 2
A ballot box contains the votes for the election of two candidates $A$ and $B$. It is known that candidate $A$ has $6$ votes and candidate $B$ has $9$. Find the probability that, when carrying out the scrutiny, candidate $B$ always goes first.
1978 Austrian-Polish Competition, 6
We are given a family of discs in the plane, with pairwise disjoint interiors. Each disc is tangent to at least six other discs of the family. Show that the family is infinite.
1998 Belarus Team Selection Test, 2
In town $ A,$ there are $ n$ girls and $ n$ boys, and each girl knows each boy. In town $ B,$ there are $ n$ girls $ g_1, g_2, \ldots, g_n$ and $ 2n \minus{} 1$ boys $ b_1, b_2, \ldots, b_{2n\minus{}1}.$ The girl $ g_i,$ $ i \equal{} 1, 2, \ldots, n,$ knows the boys $ b_1, b_2, \ldots, b_{2i\minus{}1},$ and no others. For all $ r \equal{} 1, 2, \ldots, n,$ denote by $ A(r),B(r)$ the number of different ways in which $ r$ girls from town $ A,$ respectively town $ B,$ can dance with $ r$ boys from their own town, forming $ r$ pairs, each girl with a boy she knows. Prove that $ A(r) \equal{} B(r)$ for each $ r \equal{} 1, 2, \ldots, n.$
2014 CHMMC (Fall), 3
Two players play a game on a pile of $n$ beans. On each player's turn, they may take exactly $1$, $4$, or $7$ beans from the pile. One player goes first, and then the players alternate until somebody wins. A player wins when they take the last bean from the pile. For how many $n$ between $2014$ and $2050$ (inclusive) does the second player win?
2017 Simon Marais Mathematical Competition, A1
The five sides and five diagonals of a regular pentagon are drawn on a piece of paper. Two people play a game, in which they take turns to colour one of these ten line segments. The first player colours line segments blue, while the second player colours line segments red. A player cannot colour a line segment that has already been coloured. A player wins if they are the first to create a triangle in their own colour, whose three vertices are also vertices of the regular pentagon. The game is declared a draw if all ten line segments have been coloured without a player winning. Determine whether the first player, the second player, or neither player can force a win.
2013 BMT Spring, 10
If five squares of a $3 \times 3$ board initially colored white are chosen at random and blackened, what is the expected number of edges between two squares of the same color?
2008 Danube Mathematical Competition, 4
Let $ n\geq 2$ be a positive integer. Find the [u]maximum[/u] number of segments with lenghts greater than $ 1,$ determined by $ n$ points which lie on a closed disc with radius $ 1.$
2016 Romania Team Selection Tests, 1
Determine the planar finite configurations $C$ consisting of at least $3$ points, satisfying the following conditions; if $x$ and $y$ are distinct points of $C$, there exist $z\in C$ such that $xyz$ are three vertices of equilateral triangles
2022 JBMO Shortlist, C5
Let $S$ be a finite set of points in the plane, such that for each $2$ points $A$ and $B$ in $S$, the segment $AB$ is a side of a regular polygon all of whose vertices are contained in $S$. Find all possible values for the number of elements of $S$.
Proposed by [i]Viktor Simjanoski, Macedonia[/i]
2013 Hong kong National Olympiad, 4
In a chess tournament there are $n>2$ players. Every two players play against each other exactly once. It is known that exactly $n$ games end as a tie. For any set $S$ of players, including $A$ and $B$, we say that $A$ [i]admires[/i] $B$ [i]in that set [/i]if
i) $A$ does not beat $B$; or
ii) there exists a sequence of players $C_1,C_2,\ldots,C_k$ in $S$, such that $A$ does not beat $C_1$, $C_k$ does not beat $B$, and $C_i$ does not beat $C_{i+1}$ for $1\le i\le k-1$.
A set of four players is said to be [i]harmonic[/i] if each of the four players admires everyone else in the set. Find, in terms of $n$, the largest possible number of harmonic sets.
Kvant 2019, M2563
Pasha and Vova play the following game, making moves in turn; Pasha moves first. Initially, they have a large piece of plasticine. By a move, Pasha cuts one of the existing pieces into three(of arbitrary sizes), and Vova merges two existing pieces into one. Pasha wins if at some point there appear to be $100$ pieces of equal weights. Can Vova prevent Pasha's win?
2004 Harvard-MIT Mathematics Tournament, 4
A horse stands at the corner of a chessboard, a white square. With each jump, the horse can move either two squares horizontally and one vertically or two vertically and one horizontally (like a knight moves). The horse earns two carrots every time it lands on a black square, but it must pay a carrot in rent to rabbit who owns the chessboard for every move it makes. When the horse reaches the square on which it began, it can leave. What is the maximum number of carrots the horse can earn without touching any square more than twice?
[img]https://cdn.artofproblemsolving.com/attachments/e/c/c817d92ead6cfb3868f9cb526fb4e1fd7ffe4d.png[/img]
1997 Brazil Team Selection Test, Problem 5
Consider an infinite strip, divided into unit squares. A finite number of nuts is placed in some of these squares. In a step, we choose a square $A$ which has more than one nut and take one of them and put it on the square on the right, take another nut (from $A$) and put it on the square on the left. The procedure ends when all squares has at most one nut. Prove that, given the initial configuration, any procedure one takes will end after the same number of steps and with the same final configuration.
2016 Saudi Arabia Pre-TST, 2.1
1) Prove that there are infinitely many positive integers $n$ such that there exists a permutation of $1, 2, 3, . . . , n$ with the property that the difference between any two adjacent numbers is equal to either $2015$ or $2016$.
2) Let $k$ be a positive integer. Is the statement in 1) still true if we replace the numbers $2015$ and $2016$ by $k$ and $k + 2016$, respectively?
2022 MOAA, 1
Consider the $5$ by $5$ equilateral triangular grid as shown: [img]https://cdn.artofproblemsolving.com/attachments/1/2/cac43ae24fd4464682a7992e62c99af4acaf8f.png[/img]
How many equilateral triangles are there with sides along the gridlines?
2016 Postal Coaching, 4
Consider a $2n\times 2n$ chessboard with all the $4n^2$ cells being white to start with. The following operation is allowed to be performed any number of times:
"Three consecutive cells (in a row or column) are recolored (a white cell is colored black and a black cell is colored white)."
Find all possible values of $n\ge 2$ for which using the above operation one can obtain the normal chess coloring of the given board.
2002 Tournament Of Towns, 4
There are $n$ lamps in a row. Some of which are on. Every minute all the lamps already on go off. Those which were off and were adjacent to exactly one lamp which was on will go on. For which $n$ one can find an initial configuration of lamps which were on, such that at least one lamp will be on at any time?
2003 IMO, 1
Let $A$ be a $101$-element subset of the set $S=\{1,2,\ldots,1000000\}$. Prove that there exist numbers $t_1$, $t_2, \ldots, t_{100}$ in $S$ such that the sets \[ A_j=\{x+t_j\mid x\in A\},\qquad j=1,2,\ldots,100 \] are pairwise disjoint.