This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2004 India IMO Training Camp, 3

Two runners start running along a circular track of unit length from the same starting point and int he same sense, with constant speeds $v_1$ and $v_2$ respectively, where $v_1$ and $v_2$ are two distinct relatively prime natural numbers. They continue running till they simultneously reach the starting point. Prove that (a) at any given time $t$, at least one of the runners is at a distance not more than $\frac{[\frac{v_1 + v_2}{2}]}{v_1 + v_2}$ units from the starting point. (b) there is a time $t$ such that both the runners are at least $\frac{[\frac{v_1 + v_2}{2}]}{v_1 + v_2}$ units away from the starting point. (All disstances are measured along the track). $[x]$ is the greatest integer function.

2001 May Olympiad, 3

In a board with $3$ rows and $555$ columns, $3$ squares are colored red, one in each of the $3$ rows. If the numbers from $1$ to $1665$ are written in the boxes, in row order, from left to right (in the first row from $1$ to $555$, in the second from $556$ to $1110$ and in the third from $1111$ to $1665$) there are $3$ numbers that are written in red squares. If they are written in the boxes, ordered by columns, from top to bottom, the numbers from $1$ to $1665$ (in the first column from $1$ to $3$, in the second from $4$ to $6$, in the third from $7$ to $9$,... ., and in the last one from $1663$ to $1665$) there are $3$ numbers that are written in red boxes. We call [i]red[/i] numbers those that in one of the two distributions are written in red boxes. Indicate which are the $3$ squares that must be colored red so that there are only $3$ red numbers. Show all the possibilities.

2023 Mongolian Mathematical Olympiad, 3

Five girls and five boys took part in a competition. Suppose that we can number the boys and girls $1, 2, 3, 4, 5$ such that for each $1 \leq i,j \leq 5$, there are exactly $|i-j|$ contestants that the girl numbered $i$ and the boy numbered $j$ both know. Let $a_i$ and $b_i$ be the number of contestants that the girl numbered $i$ knows and the number of contestants that the boy numbered $i$ knows respectively. Find the minimum value of $\max(\sum\limits_{i=1}^5a_i, \sum\limits_{i=1}^5b_i)$. (Note that for a pair of contestants $A$ and $B$, $A$ knowing $B$ doesn't mean that $B$ knows $A$ and a contestant cannot know themself.)

2006 Bundeswettbewerb Mathematik, 1

A circular disk is partitioned into $ 2n$ equal sectors by $ n$ straight lines through its center. Then, these $ 2n$ sectors are colored in such a way that exactly $ n$ of the sectors are colored in blue, and the other $ n$ sectors are colored in red. We number the red sectors with numbers from $ 1$ to $ n$ in counter-clockwise direction (starting at some of these red sectors), and then we number the blue sectors with numbers from $ 1$ to $ n$ in clockwise direction (starting at some of these blue sectors). Prove that one can find a half-disk which contains sectors numbered with all the numbers from $ 1$ to $ n$ (in some order). (In other words, prove that one can find $ n$ consecutive sectors which are numbered by all numbers $ 1$, $ 2$, ..., $ n$ in some order.) [hide="Problem 8 from CWMO 2007"]$ n$ white and $ n$ black balls are placed at random on the circumference of a circle.Starting from a certain white ball,number all white balls in a clockwise direction by $ 1,2,\dots,n$. Likewise number all black balls by $ 1,2,\dots,n$ in anti-clockwise direction starting from a certain black ball.Prove that there exists a chain of $ n$ balls whose collection of numbering forms the set $ \{1,2,3\dots,n\}$.[/hide]

2009 China Team Selection Test, 1

Let $ \alpha,\beta$ be real numbers satisfying $ 1 < \alpha < \beta.$ Find the greatest positive integer $ r$ having the following property: each of positive integers is colored by one of $ r$ colors arbitrarily, there always exist two integers $ x,y$ having the same color such that $ \alpha\le \frac {x}{y}\le\beta.$

2021 Winter Stars of Mathematics, 2

Given a positive integer $k,$ prove that for any integer $n \geq 20k,$ there exist $n - k$ pairwise distinct positive integers whose squares add up to $n(n + 1)(2n + 1)/6.$ [i]The Problem Selection Committee[/i]

2018 Junior Balkan Team Selection Tests - Romania, 4

What is the maximum number of rooks one can place on a chessboard such that any rook attacks exactly two other rooks? (We say that two rooks attack each other if they are on the same line or on the same column and between them there are no other rooks.) Alexandru Mihalcu

1987 China Team Selection Test, 1

a.) For all positive integer $k$ find the smallest positive integer $f(k)$ such that $5$ sets $s_1,s_2, \ldots , s_5$ exist satisfying: [b]i.[/b] each has $k$ elements; [b]ii.[/b] $s_i$ and $s_{i+1}$ are disjoint for $i=1,2,...,5$ ($s_6=s_1$) [b]iii.[/b] the union of the $5$ sets has exactly $f(k)$ elements. b.) Generalisation: Consider $n \geq 3$ sets instead of $5$.

2012 May Olympiad, 5

There are 12 people such that for every person A and person B there exists a person C that is a friend to both of them. Determine the minimum number of pairs of friends and construct a graph where the edges represent friendships.

2015 Mexico National Olympiad, 4

Let $n$ be a positive integer. Mary writes the $n^3$ triples of not necessarily distinct integers, each between $1$ and $n$ inclusive on a board. Afterwards, she finds the greatest (possibly more than one), and erases the rest. For example, in the triple $(1, 3, 4)$ she erases the numbers 1 and 3, and in the triple $(1, 2, 2)$ she erases only the number 1, Show after finishing this process, the amount of remaining numbers on the board cannot be a perfect square.

2018 IMO Shortlist, C4

An [i]anti-Pascal[/i] triangle is an equilateral triangular array of numbers such that, except for the numbers in the bottom row, each number is the absolute value of the difference of the two numbers immediately below it. For example, the following is an anti-Pascal triangle with four rows which contains every integer from $1$ to $10$. \[\begin{array}{ c@{\hspace{4pt}}c@{\hspace{4pt}} c@{\hspace{4pt}}c@{\hspace{2pt}}c@{\hspace{2pt}}c@{\hspace{4pt}}c } \vspace{4pt} & & & 4 & & & \\\vspace{4pt} & & 2 & & 6 & & \\\vspace{4pt} & 5 & & 7 & & 1 & \\\vspace{4pt} 8 & & 3 & & 10 & & 9 \\\vspace{4pt} \end{array}\] Does there exist an anti-Pascal triangle with $2018$ rows which contains every integer from $1$ to $1 + 2 + 3 + \dots + 2018$? [i]Proposed by Morteza Saghafian, Iran[/i]

2010 Korea Junior Math Olympiad, 8

In a rectangle with vertices $(0, 0), (0, 2), (n,0),(n, 2)$, ($n$ is a positive integer) find the number of longest paths starting from $(0, 0)$ and arriving at $(n, 2)$ which satis fy the following: $\bullet$ At each movement, you can move right, up, left, down by $1$. $\bullet$ You cannot visit a point you visited before. $\bullet$ You cannot move outside the rectangle.

2016 Thailand Mathematical Olympiad, 10

A [i]Pattano coin[/i] is a coin which has a blue side and a yellow side. A positive integer not exceeding $100$ is written on each side of every coin (the sides may have different integers). Two Pattano coins are [i]identical [/i] if the number on the blue side of both coins are equal and the number on the yellow side of both coins are equal. Two Pattano coins are [i]pairable [/i] if the number on the blue side of both coins are equal or the number on the yellow side of both coins are equal. Given $2559$ Pattano coins such that no two coins are identical. Show that at least one Pattano coin is pairable with at least $50$ other coins

2007 Romania Team Selection Test, 3

Three travel companies provide transportation between $n$ cities, such that each connection between a pair of cities is covered by one company only. Prove that, for $n \geq 11$, there must exist a round-trip through some four cities, using the services of a same company, while for $n < 11$ this is not anymore necessarily true. [i]Dan Schwarz[/i]

2004 Brazil Team Selection Test, Problem 2

Show that there exist infinitely many pairs of positive integers $(m,n)$ such that $\binom m{n-1}=\binom{m-1}n$.

1987 Polish MO Finals, 1

There are $n \ge 2$ points in a square side $1$. Show that one can label the points $P_1, P_2, ... , P_n$ such that $\sum_{i=1}^n |P_{i-1} - P_i|^2 \le 4$, where we use cyclic subscripts, so that $P_0$ means $P_n$.

2008 All-Russian Olympiad, 2

The columns of an $ n\times n$ board are labeled $ 1$ to $ n$. The numbers $ 1,2,...,n$ are arranged in the board so that the numbers in each row and column are pairwise different. We call a cell "good" if the number in it is greater than the label of its column. For which $ n$ is there an arrangement in which each row contains equally many good cells?

2014 Czech-Polish-Slovak Junior Match, 3

We have $10$ identical tiles as shown. The tiles can be rotated, but not flipper over. A $7 \times 7$ board should be covered with these tiles so that exactly one unit square is covered by two tiles and all other fields by one tile. Designate all unit sqaures that can be covered with two tiles. [img]https://cdn.artofproblemsolving.com/attachments/d/5/6602a5c9e99126bd656f997dee3657348d98b5.png[/img]

2010 Contests, 1

Misha and Sahsa play a game on a $100\times 100$ chessboard. First, Sasha places $50$ kings on the board, and Misha places a rook, and then they move in turns, as following (Sasha begins): At his move, Sasha moves each of the kings one square in any direction, and Misha can move the rook on the horizontal or vertical any number of squares. The kings cannot be captured or stepped over. Sasha's purpose is to capture the rook, and Misha's is to avoid capture. Is there a winning strategy available for Sasha?

1989 IMO Shortlist, 19

A natural number is written in each square of an $ m \times n$ chess board. The allowed move is to add an integer $ k$ to each of two adjacent numbers in such a way that non-negative numbers are obtained. (Two squares are adjacent if they have a common side.) Find a necessary and sufficient condition for it to be possible for all the numbers to be zero after finitely many operations.

2019 CHMMC (Fall), Individual

[b]p1.[/b] Consider a cube with side length $2$. Take any one of its vertices and consider the three midpoints of the three edges emanating from that vertex. What is the distance from that vertex to the plane formed by those three midpoints? [b]p2.[/b] Digits $H$, $M$, and $C$ satisfy the following relations where $\overline{ABC}$ denotes the number whose digits in base $10$ are $A$, $B$, and $C$. $$\overline{H}\times \overline{H} = \overline{M}\times \overline{C} + 1$$ $$\overline{HH}\times \overline{H} = \overline{MC}\times \overline{C} + 1$$ $$\overline{HHH}\times \overline{H} = \overline{MCC}\times \overline{C} + 1$$ Find $\overline{HMC}$. [b]p3.[/b] Two players play the following game on a table with fair two-sided coins. The first player starts with one, two, or three coins on the table, each with equal probability. On each turn, the player flips all the coins on the table and counts how many coins land heads up. If this number is odd, a coin is removed from the table. If this number is even, a coin is added to the table. A player wins when he/she removes the last coin on the table. Suppose the game ends. What is the probability that the first player wins? [b]p4.[/b] Cyclic quadrilateral $[BLUE]$ has right $\angle E$. Let $R$ be a point not in $[BLUE]$. If $[BLUR] =[BLUE]$, $\angle ELB = 45^o$, and $\overline{EU} = \overline{UR}$, find $\angle RUE$. [b]p5.[/b] There are two tracks in the $x, y$ plane, defined by the equations $$y =\sqrt{3 - x^2}\,\,\, \text{and} \,\,\,y =\sqrt{4- x^2}$$ A baton of length $1$ has one end attached to each track and is allowed to move freely, but no end may be picked up or go past the end of either track. What is the maximum area the baton can sweep out? [b]p6.[/b] For integers $1 \le a \le 2$, $1 \le b \le 10$,$ 1 \le c \le 12$, $1 \le d \le 18$, let $f(a, b, c, d)$ be the unique integer between $0$ and $8150$ inclusive that leaves a remainder of a when divided by $3$, a remainder of $b$ when divided by $11$, a remainder of $c$ when divided by $13$, and a remainder of $d$ when divided by $19$. Compute $$\sum_{a+b+c+d=23}f(a, b, c, d).$$ [b]p7.[/b] Compute $\cos ( \theta)$ if $$\sum^{\infty}_{n=0} \frac{ \cos (n\theta)}{3^n} = 1.$$ [b]p8.[/b] How many solutions does this equation $$\left(\frac{a+b}{2}\right)^2=\left(\frac{b+c}{2019}\right)^2$$ have in positive integers $a, b, c$ that are all less than $2019^2$? [b]p9.[/b] Consider a square grid with vertices labeled $1, 2, 3, 4$ clockwise in that order. Fred the frog is jumping between vertices, with the following rules: he starts at the vertex label $1$, and at any given vertex he jumps to the vertex diagonally across from him with probability $\frac12$ and the vertices adjacent to him each with probability $\frac14$ . After $2019$ jumps, suppose the probability that the sum of the labels on the last two vertices he has visited is $3$ can be written as $2^{-m} -2^{-n}$ for positive integers $m,n$. Find $m + n$. [b]p10.[/b] The base ten numeral system uses digits $0-9$ and each place value corresponds to a power of $10$. For example, $$2019 = 2 \cdot 10^3 + 0 \cdot 10^2 + 1 \cdot 10^1 + 9 \cdot 10^0.$$ Let $\phi =\frac{1 +\sqrt5}{2}$. We can define a similar numeral system, base , where we only use digits $0$ and $1$, and each place value corresponds to a power of . For example, $$11.01 = 1 \cdot \phi^1 + 1 \cdot \phi^0 + 0 \cdot \phi^{-1} + 1 \cdot \phi^{-2}$$ Note that base  representations are not unique, because, for example, $100_{\phi} = 11_{\phi}$. Compute the base $\phi$ representation of $7$ with the fewest number of $1$s. [b]p11.[/b] Let $ABC$ be a triangle with $\angle BAC = 60^o$ and with circumradius $1$. Let $G$ be its centroid and $D$ be the foot of the perpendicular from $A$ to $BC$. Suppose $AG =\frac{\sqrt6}{3}$ . Find $AD$. [b]p12.[/b] Let $f(a, b)$ be a function with the following properties for all positive integers $a \ne b$: $$f(1, 2) = f(2, 1)$$ $$f(a, b) + f(b, a) = 0$$ $$f(a + b, b) = f(b, a) + b$$ Compute: $$\sum^{2019}_{i=1} f(4^i - 1, 2^i) + f(4^i + 1, 2^i)$$ [b]p13.[/b] You and your friends have been tasked with building a cardboard castle in the two-dimensional Cartesian plane. The castle is built by the following rules: 1. There is a tower of height $2^n$ at the origin. 2. From towers of height $2^i \ge 2$, a wall of length $2^{i-1}$ can be constructed between the aforementioned tower and a new tower of height $2^{i-1}$. Walls must be parallel to a coordinate axis, and each tower must be connected to at least one other tower by a wall. If one unit of tower height costs $\$9$ and one unit of wall length costs $\$3$ and $n = 1000$, how many distinct costs are there of castles that satisfy the above constraints? Two castles are distinct if there exists a tower or wall that is in one castle but not in the other. [b]p14.[/b] For $n$ digits, $(a_1, a_2, ..., a_n)$ with $0 \le a_i < n$ for $i = 1, 2,..., n$ and $a_1 \ne 0$ define $(\overline{a_1a_2 ... a_n})_n$ to be the number with digits $a_1$, $a_2$, $...$, $a_n$ written in base $n$. Let $S_n = \{(a_1, a_2, a_3,..., a_n)| \,\,\, (n + 1)| (\overline{a_1a_2 ... a_n})_n, a_1 \ge 1\}$ be the set of $n$-tuples such that $(\overline{a_1a_2 ... a_n})_n$ is divisible by $n + 1$. Find all $n > 1$ such that $n$ divides $|S_n| + 2019$. [b]p15.[/b] Let $P$ be the set of polynomials with degree $2019$ with leading coefficient $1$ and non-leading coefficients from the set $C = \{-1, 0, 1\}$. For example, the function $f = x^{2019} - x^{42} + 1$ is in $P$, but the functions $f = x^{2020}$, $f = -x^{2019}$, and $f = x^{2019} + 2x^{21}$ are not in $P$. Define a [i]swap [/i]on a polynomial $f$ to be changing a term $ax^n$ to $bx^n$ where $b \in C$ and there are no terms with degree smaller than $n$ with coefficients equal to $a$ or $b$. For example, a swap from $x^{2019} + x^{17} - x^{15} + x^{10}$ to $x^{2019} + x^{17} - x^{15} - x^{10}$ would be valid, but the following swaps would not be valid: $$x^{2019} + x^3 \,\,\, \text{to} \,\,\, x^{2019}$$ $$x^{2019} + x^3 \,\,\, \text{to} \,\,\, x^{2019} + x^3 + x^2$$ $$x^{2019} + x^2 + x + 1 \,\,\, \text{to} \,\,\, x^{2019} - x^2 - x - 1$$ Let $B$ be the set of polynomials in $P$ where all non-leading terms have the same coefficient. There are $p$ polynomials that can be reached from each element of $B$ in exactly $s$ swaps, and there exist $0$ polynomials that can be reached from each element of $B$ in less than $s$ swaps. Compute $p \cdot s$, expressing your answer as a prime factorization. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1981 Poland - Second Round, 5

In the plane there are two disjoint sets $ A $ and $ B $, each of which consists of $ n $ points, and no three points of the set $ A \cup B $ lie on one straight line. Prove that there is a set of $ n $ disjoint closed segments, each of which has one end in the set $ A $ and the other in the set $ B $.

2007 Balkan MO Shortlist, C1

For a given positive integer $n >2$, let $C_{1},C_{2},C_{3}$ be the boundaries of three convex $n-$ gons in the plane , such that $C_{1}\cap C_{2}, C_{2}\cap C_{3},C_{1}\cap C_{3}$ are finite. Find the maximum number of points of the sets $C_{1}\cap C_{2}\cap C_{3}$.

Kvant 2024, M2801

Yuri is looking at the great Mayan table. The table has $200$ columns and $2^{200}$ rows. Yuri knows that each cell of the table depicts the sun or the moon, and any two rows are different (i.e. differ in at least one column). Each cell of the table is covered with a sheet. The wind has blown aways exactly two sheets from each row. Could it happen that now Yuri can find out for at least $10000$ rows what is depicted in each of them (in each of the columns)? [i]Proposed by I. Bogdanov, K. Knop[/i]

2014 Puerto Rico Team Selection Test, 5

In a cycling competition with $14$ stages, one each day, and $100$ participants, a competitor was characterized by finishing $93^{\text{rd}}$ each day.What is the best place he could have finished in the overall standings? (Overall standings take into account the total cycling time over all stages.)