Found problems: 14842
2021 Durer Math Competition Finals, 5
A torpedo set consists of $2$ pieces of $1 \times 4$, $4$ pieces of $1 \times 3$, $6$ pieces of $1 \times 2$ and $ 8$ pieces of $1 \times 1$ ships.
a) Can one put the whole set to a $10 \times 10$ table so that the ships do not even touch with corners? (The ships can be placed both horizontally and vertically.)
b) Can we solve this problem if we change $4$ pieces of $1 \times 1$ ships to $3$ pieces of $1 \times 2$ ships?
c) Can we solve the problem if we change the remaining $4$ pieces of $1 \times 1$ ships to one piece of $1 \times 3$ ship and one piece of $1 \times 2$ ship? (So the number of pieces are $2, 5, 10, 0$.)
MBMT Guts Rounds, 2022
[hide=D stands for Dedekind, Z stands for Zermelo]they had two problem sets under those two names[/hide]
[u]Set 4[/u]
[b]D16.[/b] The cooking club at Blair creates $14$ croissants and $21$ danishes. Daniel chooses pastries randomly, stopping when he gets at least one croissant and at least two danishes. How many pastries must he choose to guarantee that he has one croissant and two danishes?
[b]D17.[/b] Each digit in a $3$ digit integer is either $1, 2$, or $4$ with equal probability. What is the probability that the hundreds digit is greater than the sum of the tens digit and the ones digit?
[b]D18 / Z11.[/b] How many two digit numbers are there such that the product of their digits is prime?
[b]D19 / Z9.[/b] In the coordinate plane, a point is selected in the rectangle defined by $-6 \le x \le 4$ and $-2 \le y \le 8$. What is the largest possible distance between the point and the origin, $(0, 0)$?
[b]D20 / Z10.[/b] The sum of two numbers is $6$ and the sum of their squares is $32$. Find the product of the two numbers.
[u]Set 5[/u]
[b]D21 / Z12.[/b] Triangle $ABC$ has area $4$ and $\overline{AB} = 4$. What is the maximum possible value of $\angle ACB$?
[b]D22 / Z13.[/b] Let $ABCD$ be an iscoceles trapezoid with $AB = CD$ and M be the midpoint of $AD$. If $\vartriangle ABM$ and $\vartriangle MCD$ are equilateral, and $BC = 4$, find the area of trapezoid $ABCD$.
[b]D23 / Z14.[/b] Let $x$ and $y$ be positive real numbers that satisfy $(x^2 + y^2)^2 = y^2$. Find the maximum possible value of $x$.
[b]D24 / Z17.[/b] In parallelogram $ABCD$, $\angle A \cdot \angle C - \angle B \cdot \angle D = 720^o$ where all angles are in degrees. Find the value of $\angle C$.
[b]D25.[/b] The number $12ab9876543$ is divisible by $101$, where $a, b$ represent digits between $0$ and $9$. What is $10a + b$?
[u]Set 6[/u]
[b]D26 / Z26.[/b] For every person who wrote a problem that appeared on the final MBMT tests, take the number of problems they wrote, and then take that number’s factorial, and finally multiply all these together to get $n$. Estimate the greatest integer $a$ such that $2^a$ evenly divides $n$.
[b]D27 / Z27.[/b] Circles of radius $5$ are centered at each corner of a square with side length $6$. If a random point $P$ is chosen randomly inside the square, what is the probability that $P$ lies within all four circles?
[b]D28 / Z28.[/b] Mr. Rose’s evil cousin, Mr. Caulem, has teaches a class of three hundred bees. Every week, he tries to disrupt Mr. Rose’s $4$th period by sending three of his bee students to fly around and make human students panic. Unfortunately, no pair of bees can fly together twice, as then Mr. Rose will become suspicious and trace them back to Mr. Caulem. What’s the largest number of weeks Mr. Caulem can disrupt Mr. Rose’s class?
[b]D29 / Z29. [/b]Two blind brothers Beard and Bored are driving their tractors in the middle of a field facing north, and both are $10$ meters west from a roast turkey. Beard, can turn exactly $0.7^o$ and Bored can turn exactly $0.2^o$ degrees. Driving at a consistent $2$ meters per second, they drive straight until they notice the smell of the turkey getting farther away, and then turn right and repeat until they get to the turkey.
Suppose Beard gets to the Turkey in about $818.5$ seconds. Estimate the amount of time it will take Bored.
[b]D30 / Z30.[/b] Let a be the probability that $4$ randomly chosen positive integers have no common divisor except for $1$. Estimate $300a$. Note that the integers $1, 2, 3, 4$ have no common divisor except for $1$.
Remark. This problem is asking you to find $300 \lim_{n\to \infty} a_n$, if $a_n$ is defined to be the probability that $4$ randomly chosen integers from $\{1, 2, ..., n\}$ have greatest common divisor $1$.
PS. You should use hide for answers. D.1-15 / Z.1-8 problems have been collected [url=https://artofproblemsolving.com/community/c3h2916240p26045561]here [/url]and Z.15-25 [url=https://artofproblemsolving.com/community/c3h2916258p26045774]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2014 Taiwan TST Round 3, 1
Positive integers $x_1, x_2, \dots, x_n$ ($n \ge 4$) are arranged in a circle such that each $x_i$ divides the sum of the neighbors; that is \[ \frac{x_{i-1}+x_{i+1}}{x_i} = k_i \] is an integer for each $i$, where $x_0 = x_n$, $x_{n+1} = x_1$. Prove that \[ 2n \le k_1 + k_2 + \dots + k_n < 3n. \]
2022 Dutch IMO TST, 3
There are $15$ lights on the ceiling of a room, numbered from $1$ to $15$. All lights are turned off. In another room, there are $15$ switches: a switch for lights $1$ and $2$, a switch for lights $2$ and $3$, a switch for lights $3$ en $4$, etcetera, including a sqitch for lights $15$ and $1$. When the switch for such a pair of lights is turned, both of the lights change their state (from on to off, or vice versa). The switches are put in a random order and all look identical. Raymond wants to find out which switch belongs which pair of lights. From the room with the switches, he cannot see the lights. He can, however, flip a number of switches, and then go to the other room to see which lights are turned on. He can do this multiple times. What is the minimum number of visits to the other room that he has to take to determine for each switch with certainty which pair of lights it corresponds to?
1994 Tournament Of Towns, (431) 1
Several boys and girls are dancing a waltz at a ball. Is it possible that each girl can always get to dance the next dance with either a more handsome or more clever boy than for the previous dance, and that each time at least $80\%$ of the girls get to dance the next dance with a boy who is more handsome and more clever? (The numbers of boys and girls are equal and all are dancing.)
(AY Belov)
EMCC Guts Rounds, 2014
[u]Round 1[/u]
[b]p1.[/b] What is $2 + 22 + 1 + 3 - 31 - 3$?
[b]p2.[/b] Let $ABCD$ be a rhombus. Given $AB = 5$, $AC = 8$, and $BD = 6$, what is the perimeter of the rhombus?
[b]p3.[/b] There are $2$ hats on a table. The first hat has $3$ red marbles and 1 blue marble. The second hat has $2$ red marbles and $4$ blue marbles. Jordan picks one of the hats randomly, and then randomly chooses a marble from that hat. What is the probability that she chooses a blue marble?
[u]Round 2[/u]
[b]p4.[/b] There are twelve students seated around a circular table. Each of them has a slip of paper that they may choose to pass to either their clockwise or counterclockwise neighbor. After each person has transferred their slip of paper once, the teacher observes that no two students exchanged papers. In how many ways could the students have transferred their slips of paper?
[b]p5.[/b] Chad wants to test David's mathematical ability by having him perform a series of arithmetic operations at lightning-speed. He starts with the number of cubic centimeters of silicon in his 3D printer, which is $109$. He has David perform all of the following operations in series each second:
$\bullet$ Double the number
$\bullet$ Subtract $4$ from the number
$\bullet$ Divide the number by $4$
$\bullet$ Subtract $5$ from the number
$\bullet$ Double the number
$\bullet$ Subtract $4$ from the number
Chad instructs David to shout out after three seconds the result of three rounds of calculations. However, David computes too slowly and fails to give an answer in three seconds. What number should David have said to Chad?
[b]p6.[/b] Points $D, E$, and $F$ lie on sides $BC$, $CA$, and $AB$ of triangle $ABC$, respectively, such that the following length conditions are true: $CD = AE = BF = 2$ and $BD = CE = AF = 4$. What is the area of triangle $ABC$?
[u]Round 3[/u]
[b]p7.[/b] In the $2, 3, 5, 7$ game, players count the positive integers, starting with $1$ and increasing, which do not contain the digits $2, 3, 5$, and $7$, and also are not divisible by the numbers $2, 3, 5$, and $7$. What is the fifth number counted?
[b]p8.[/b] If A is a real number for which $19 \cdot A = \frac{2014!}{1! \cdot 2! \cdot 2013!}$ , what is $A$?
Note: The expression $k!$ denotes the product $k \cdot (k - 1) \cdot ...\cdot 2 \cdot 1$.
[b]p9.[/b] What is the smallest number that can be written as both $x^3 + y^2$ and $z^3 + w^2$ for positive integers $x, y, z,$ and $w$ with $x \ne z$?
[u]Round 4[/u]
[i]Each of the three problems in this round depends on the answer to one of the other problems. There is only one set of correct answers to these problems; however, each problem will be scored independently, regardless of whether the answers to the other problems are correct. In addition, it is given that the answer to each of the following problems is a positive integer less than or equal to the problem number.
[/i]
[b]p10.[/b] Let $B$ be the answer to problem $11$ and let $C$ be the answer to problem $12$. What is the sum of a side length of a square with perimeter $B$ and a side length of a square with area $C$?
[b]p11.[/b] Let $A$ be the answer to problem $10$ and let $C$ be the answer to problem $12$. What is $(C - 1)(A + 1) - (C + 1)(A - 1)$?
[b]p12.[/b] Let $A$ be the answer to problem $10$ and let $B$ be the answer to problem $11$. Let $x$ denote the positive difference between $A$ and $B$. What is the sum of the digits of the positive integer $9x$?
PS. You should use hide for answers. Rounds 5-8 have been posted [url=https://artofproblemsolving.com/community/c3h2915810p26040675]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2016 Bulgaria National Olympiad, Problem 6
Let $n$ be positive integer.A square $A$ of side length $n$ is divided by $n^2$ unit squares. All unit squares are painted in $n$ distinct colors such that each color appears exactly $n$ times. Prove that there exists a positive integer $N$ , such that for any $n>N$ the following is true: There exists a square $B$ of side length $\sqrt{n}$ and side parallel to the sides of $A$ such that $B$ contains completely cells of $4$ distinct colors.
2016 Junior Balkan Team Selection Tests - Romania, 4
We have a 4x4 board.All 1x1 squares are white.A move is changing colours of all squares of a 1x3 rectangle from black to white and from white to black.It is possible to make all the 1x1 squares black after several moves?
2018 Romanian Master of Mathematics Shortlist, C2
Fix integers $n\ge k\ge 2$. We call a collection of integral valued coins $n-diverse$ if no value occurs in it more than $n$ times. Given such a collection, a number $S$ is $n-reachable$ if that collection contains $n$ coins whose sum of values equals $S$. Find the least positive integer $D$ such that for any $n$-diverse collection of $D$ coins there are at least $k$ numbers that are $n$-reachable.
[I]Proposed by Alexandar Ivanov, Bulgaria.[/i]
2010 HMNT, 9
Newton and Leibniz are playing a game with a coin that comes up heads with probability $p$. They take turns flipping the coin until one of them wins with Newton going first. Newton wins if he flips a heads and Leibniz wins if he flips a tails. Given that Newton and Leibniz each win the game half of the time, what is the probability $p$?
2001 Bulgaria National Olympiad, 3
Given a permutation $(a_{1}, a_{1},...,a_{n})$ of the numbers $1, 2,...,n$ one may interchange any two consecutive "blocks" - that is, one may transform
($a_{1}, a_{2},...,a_{i}$,$\underbrace {a_{i+1},... a_{i+p},}_{A} $ $ \underbrace{a_{i+p+1},...,a_{i+q},}_{B}...,a_{n}) $
into
$ (a_{1}, a_{2},...,a_{i},$ $ \underbrace {a_{i+p+1},...,a_{i+q},}_{B} $ $ \underbrace {a_{i+1},... a_{i+p}}_{A}$$,...,a_{n}) $
by interchanging the "blocks" $A$ and $B$. Find the least number of such changes which are needed to transform $(n, n-1,...,1)$ into $(1,2,...,n)$
1986 IMO Longlists, 6
In an urn there are one ball marked $1$, two balls marked $2$, and so on, up to $n$ balls marked $n$. Two balls are randomly drawn without replacement. Find the probability that the two balls are assigned the same number.
2018 Azerbaijan IMO TST, 2
Let $N$ be an odd number, $N\geq 3$. $N$ tennis players take part in a championship. Before starting the championship, a commission puts the players in a row depending on how good they think the players are. During the championship, every player plays with every other player exactly once, and each match has a winner. A match is called [i]suprising[/i] if the winner was rated lower by the commission. At the end of the tournament, players are arranged in a line based on the number of victories they have achieved. In the event of a tie, the commission's initial order is used to decide which player will be higher.
It turns out that the final order is exactly the same as the commission's initial order. What is the maximal number of suprising matches that could have happened.
1966 IMO Shortlist, 51
Consider $n$ students with numbers $1, 2, \ldots, n$ standing in the order $1, 2, \ldots, n.$ Upon a command, any of the students either remains on his place or switches his place with another student. (Actually, if student $A$ switches his place with student $B,$ then $B$ cannot switch his place with any other student $C$ any more until the next command comes.)
Is it possible to arrange the students in the order $n,1, 2, \ldots, n-1$ after two commands ?
1972 IMO Longlists, 20
Let $n_1, n_2$ be positive integers. Consider in a plane $E$ two disjoint sets of points $M_1$ and $M_2$ consisting of $2n_1$ and $2n_2$ points, respectively, and such that no three points of the union $M_1 \cup M_2$ are collinear. Prove that there exists a straightline $g$ with the following property: Each of the two half-planes determined by $g$ on $E$ ($g$ not being included in either) contains exactly half of the points of $M_1$ and exactly half of the points of $M_2.$
2010 Germany Team Selection Test, 2
For an integer $m\geq 1$, we consider partitions of a $2^m\times 2^m$ chessboard into rectangles consisting of cells of chessboard, in which each of the $2^m$ cells along one diagonal forms a separate rectangle of side length $1$. Determine the smallest possible sum of rectangle perimeters in such a partition.
[i]Proposed by Gerhard Woeginger, Netherlands[/i]
2024 Bulgarian Spring Mathematical Competition, 12.4
Let $d \geq 3$ be a positive integer. The binary strings of length $d$ are splitted into $2^{d-1}$ pairs, such that the strings in each pair differ in exactly one position. Show that there exists an $\textit{alternating cycle}$ of length at most $2d-2$, i.e. at most $2d-2$ binary strings that can be arranged on a circle so that any pair of adjacent strings differ in exactly one position and exactly half of the pairs of adjacent strings are pairs in the split.
2011 JBMO Shortlist, 3
We can change a natural number $n$ in three ways:
a) If the number $n$ has at least two digits, we erase the last digit and we subtract that digit from the remaining number (for example, from $123$ we get $12 - 3 = 9$);
b) If the last digit is different from $0$, we can change the order of the digits in the opposite one (for example, from $123$ we get $321$);
c) We can multiply the number $n$ by a number from the set $ \{1, 2, 3,..., 2010\}$.
Can we get the number $21062011$ from the number $1012011$?
2020 HMNT (HMMO), 9
In the Cartesian plane, a perfectly reflective semicircular room is bounded by the upper half of the unit circle centered at $(0,0)$ and the line segment from $(-1,0)$ to $(1,0)$. David stands at the point $(-1,0)$ and shines a flashlight into the room at an angle of $46^{\circ}$ above the horizontal. How many times does the light beam reflect off the walls before coming back to David at $(-1,0)$ for the first time?
2017 CMIMC Individual Finals, 2
Kevin likes drawing. He takes a large piece of paper and draws on it every rectangle with positive integer side lengths and perimeter at most 2017, with no two rectangles overlapping. Compute the total area of the paper that is covered by a rectangle.
1987 IMO Longlists, 66
At a party attended by $n$ married couples, each person talks to everyone else at the party except his or her spouse. The conversations involve sets of persons or cliques $C_1, C_2, \cdots, C_k$ with the following property: no couple are members of the same clique, but for every other pair of persons there is exactly one clique to which both members belong. Prove that if $n \geq 4$, then $k \geq 2n$.
[i]Proposed by USA.[/i]
2006 Estonia Math Open Junior Contests, 7
A solid figure consisting of unit cubes is shown in the picture. Is it possible to exactly fill a cube with these figures if the side length of the cube is
a) 15;
b) 30?
1998 IMO Shortlist, 2
Let $n$ be an integer greater than 2. A positive integer is said to be [i]attainable [/i]if it is 1 or can be obtained from 1 by a sequence of operations with the following properties:
1.) The first operation is either addition or multiplication.
2.) Thereafter, additions and multiplications are used alternately.
3.) In each addition, one can choose independently whether to add 2 or $n$
4.) In each multiplication, one can choose independently whether to multiply by 2 or by $n$.
A positive integer which cannot be so obtained is said to be [i]unattainable[/i].
[b]a.)[/b] Prove that if $n\geq 9$, there are infinitely many unattainable positive integers.
[b]b.)[/b] Prove that if $n=3$, all positive integers except 7 are attainable.
2013 Greece National Olympiad, 3
We define the sets $A_1,A_2,...,A_{160}$ such that $\left|A_{i} \right|=i$ for all $i=1,2,...,160$. With the elements of these sets we create new sets $M_1,M_2,...M_n$ by the following procedure: in the first step we choose some of the sets $A_1,A_2,...,A_{160}$ and we remove from each of them the same number of elements. These elements that we removed are the elements of $M_1$. In the second step we repeat the same procedure in the sets that came of the implementation of the first step and so we define $M_2$. We continue similarly until there are no more elements in $A_1,A_2,...,A_{160}$, thus defining the sets $M_1,M_2,...,M_n$. Find the minimum value of $n$.
2013 Singapore Junior Math Olympiad, 5
$6$ musicians gathered at a chamber music festival. At each scheduled concert, some of the musicians played while the others listened as members of the audience. What is the least number of such concerts which would need to be scheduled so that every $2$ musicians each must play for the other in some concert?