Found problems: 14842
Kvant 2025, M2829
Consider a checkered $3m\times 3m$ square, where $m$ is an integer greater than $1.$ A frog sits on the lower left corner cell $S$ and wants to get to the upper right corner cell $F.$ The frog can hop from any cell to either the next cell to the right or the next cell upwards.
Some cells can be [i]sticky[/i], and the frog gets trapped once it hops on such a cell. A set $X$ of cells is called [i]blocking[/i] if the frog cannot reach $F$ from $S$ when all the cells of $X$ are sticky. A blocking set is [i] minimal[/i] if it does not contain a smaller blocking set.[list=a][*]Prove that there exists a minimal blocking set containing at least $3m^2-3m$ cells.
[*]Prove that every minimal blocking set containing at most $3m^2$ cells.
2000 Iran MO (2nd round), 1
$21$ distinct numbers are chosen from the set $\{1,2,3,\ldots,2046\}.$ Prove that we can choose three distinct numbers $a,b,c$ among those $21$ numbers such that
\[bc<2a^2<4bc\]
2023 Bulgarian Autumn Math Competition, 11.4
Let $G$ be a complete bipartite graph with partition sets $A$ and $B$ of sizes $km$ and $kn$, respectively. The edges of $G$ are colored in $k$ colors. Prove that there exists a monochromatic connected component with at least $m+n$ vertices (which means that there exists a color and a set of vertices, such that between any two of them, there is a path consisting of edges only in that color).
2014 IFYM, Sozopol, 4
A square with a side 1 is colored in 3 colors. What’s the greatest real number $a$ such that there can always be found 2 points of the same color at a distance $a$?
2019 Czech-Polish-Slovak Junior Match, 5
Given is a group in which everyone has exactly $d$ friends and every two strangers have exactly one common friend. Prove that there are at most $d^2 + 1$ people in this group.
1983 IMO Shortlist, 25
Prove that every partition of $3$-dimensional space into three disjoint subsets has the following property: One of these subsets contains all possible distances; i.e., for every $a \in \mathbb R^+$, there are points $M$ and $N$ inside that subset such that distance between $M$ and $N$ is exactly $a.$
2023 Thailand TST, 3
Let $n$ be a positive integer. We start with $n$ piles of pebbles, each initially containing a single pebble. One can perform moves of the following form: choose two piles, take an equal number of pebbles from each pile and form a new pile out of these pebbles. Find (in terms of $n$) the smallest number of nonempty piles that one can obtain by performing a finite sequence of moves of this form.
2012 HMNT, 7
Let $A_1A_2 . . .A_{100}$ be the vertices of a regular $100$-gon. Let $\pi$ be a randomly chosen permutation of the numbers from $1$ through $100$. The segments $A_{\pi (1)}A_{\pi (2)}$, $A_{\pi (2)}A_{\pi (3)}$, $...$ ,$A_{\pi (99)}A_{\pi (100)}, A_{\pi (100)}A_{\pi (1)}$ are drawn. Find the expected number of pairs of line segments that intersect at a point in the interior of the $100$-gon.
1973 IMO Shortlist, 6
Establish if there exists a finite set $M$ of points in space, not all situated in the same plane, so that for any straight line $d$ which contains at least two points from M there exists another straight line $d'$, parallel with $d,$ but distinct from $d$, which also contains at least two points from $M$.
2002 China Western Mathematical Olympiad, 4
Let $ n$ be a positive integer, let the sets $ A_{1},A_{2},\cdots,A_{n \plus{} 1}$ be non-empty subsets of the set $ \{1,2,\cdots,n\}.$ prove that there exist two disjoint non-empty subsets of the set $ \{1,2,\cdots,n \plus{} 1\}$: $ \{i_{1},i_{2},\cdots,i_{k}\}$ and $ \{j_{1},j_{2},\cdots,j_{m}\}$ such that $ A_{i_{1}}\cup A_{i_{2}}\cup\cdots\cup A_{i_{k}} \equal{} A_{j_{1}}\cup A_{j_{2}}\cup\cdots\cup A_{j_{m}}$.
2002 Mid-Michigan MO, 5-6
[b]p1.[/b] Find all triples of positive integers such that the sum of their reciprocals is equal to one.
[b]p2.[/b] Prove that $a(a + 1)(a + 2)(a + 3)$ is divisible by $24$.
[b]p3.[/b] There are $20$ very small red chips and some blue ones. Find out whether it is possible to put them on a large circle such that
(a) for each chip positioned on the circle the antipodal position is occupied by a chip of different color;
(b) there are no two neighboring blue chips.
[b]p4.[/b] A $12$ liter container is filled with gasoline. How to split it in two equal parts using two empty $5$ and $8$ liter containers?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2022 MOAA, 11
Let a [i]triplet [/i] be some set of three distinct pairwise parallel lines. $20$ triplets are drawn on a plane. Find the maximum number of regions these $60$ lines can divide the plane into.
2005 Danube Mathematical Olympiad, 2
Prove that the sum:
\[ S_n=\binom{n}{1}+\binom{n}{3}\cdot 2005+\binom{n}{5}\cdot 2005^2+...=\sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n}{2k+1}\cdot 2005^k \]
is divisible by $2^{n-1}$ for any positive integer $n$.
1965 Dutch Mathematical Olympiad, 4
We consider a number of points in a plane. Each of these points is connected to at least one of the other points by a line segment, in such a way that a figure arises that does not break up into different parts (that is, from any point along drawn line segments we can reach any other point).. We assign a point the ”order” $n$, when in this point $n$ line segments meet. We characterize the obtained figure by writing down the order of each of its points one after the other. For example, a hexagon is characterized by the combination $\{2,2,2,2,2,2\}$ and a star with six rays by $\{6,1,1,1,1,1,1\}$.
(a) Sketch a figure' belonging to the combination $\{4,3,3,3,3\}$.
(b) Give the combinations of all possible figures, of which the sum of the order numbers is equal to $6$.
(c) Prove that every such combination contains an even number of odd numbers.
2008 Switzerland - Final Round, 7
An $8 \times 11$ rectangle of unit squares somehow becomes disassembled into $21$ contiguous parts . Prove that at least two of these parts, except for rotations and reflections have the same shape.
2019 Nigerian Senior MO Round 4, 3
An ant is moving on the cooridnate plane, starting form point $(0,-1)$ along a straight line until it reaches the $x$- axis at point $(x,0)$ where $x$ is a real number. After it turns $90^o$ to the left and moves again along a straight line until it reaches the $y$-axis . Then it again turns left and moves along a straight line until it reaches the $x$-axis, where it once more turns left by $90^o$ and moves along a straight line until it finally reached the $y$-axis.
Can both the length of the ant's journey and distance between it's initial and final point be:
(a) rational numbers ?
(b) integers?
Justify your answers
PS. Collected [url=https://artofproblemsolving.com/community/c949609_2019_nigerian_senior_mo_round_4]here[/url]
2012 Mexico National Olympiad, 4
The following process is applied to each positive integer: the sum of its digits is subtracted from the number, and the result is divided by $9$. For example, the result of the process applied to $938$ is $102$, since $\frac{938-(9 + 3 + 8)}{9} = 102.$ Applying the process twice to $938$ the result is $11$, applied three times the result is $1$, and applying it four times the result is $0$. When the process is applied one or more times to an integer $n$, the result is eventually $0$. The number obtained before obtaining $0$ is called the [i]house[/i] of $n$.
How many integers less than $26000$ share the same [i]house[/i] as $2012$?
1962 All Russian Mathematical Olympiad, 017
Given a $n\times n$ table, where $n$ is odd. There is either $1$ or $-1$ in its every field. A product of the numbers in the column is written under every column. A product of the numbers in the row is written to the right of every row. Prove that the sum of $2n$ products doesn't equal to $0$.
1995 Tournament Of Towns, (472) 6
A game is played on a $1 \times 1000$ board. There are n chips, all of which are initially in a box near the board. Two players move in turn. The first may choose $17$ chips or less, from either on or off the board. She then puts them into unoccupied cells on the board so that there is no more than one chip in each of the cells. The second player may take off the board any number of chips occupying consecutive cells and put them back in the box. The first player wins if she can put all n chips on the board so that they occupy consecutive cells.
(a) Show that she can win if $n = 98$.
(b) For what maximal value of $n$ can she win?
(A Shapovalov)
2016 All-Russian Olympiad, 1
A carpet dealer,who has a lot of carpets in the market,is available to exchange a carpet of dimensions $a\cdot b$ either with a carpet with dimensions $\frac{1}{a}\cdot \frac{1}{b}$ or with two carpets with dimensions $c\cdot b$ and $\frac{a}{c}\cdot b$ (the customer can select the number $c$).The dealer supports that,at the beginning he had a carpet with dimensions greater than $1$ and,after some exchanges like the ones we described above,he ended up with a set of carpets,each one having one dimension greater than $1$ and one smaller than $1$.Is this possible?
[i]Note:The customer can demand from the dealer to consider a carpet of dimensions $a\cdot b$ as one with dimensions $b\cdot a$.[/i]
2016 Olympic Revenge, 2
Let $S$ a finite subset of $\mathbb{N}$. For every positive integer $i$, let $A_{i}$ the number of partitions of $i$ with all parts in $ \mathbb{N}-S$.
Prove that there exists $M\in \mathbb{N}$ such that $A_{i+1}>A_{i}$ for all $i>M$.
($ \mathbb{N}$ is the set of positive integers)
1999 BAMO, 3
A lock has $16$ keys arranged in a $4 \times 4$ array, each key oriented either horizontally or vertically. In order to open it, all the keys must be vertically oriented. When a key is switched to another position, all the other keys in the same row and column automatically switch their positions too (see diagram). Show that no matter what the starting
positions are, it is always possible to open this lock. (Only one key at a time can be switched.)
2018 Regional Olympiad of Mexico Center Zone, 4
Ana and Natalia alternately play on a $ n \times n$ board (Ana rolls first and $n> 1$). At the beginning, Ana's token is placed in the upper left corner and Natalia's in the lower right corner. A turn consists of moving the corresponding piece in any of the four directions (it is not allowed to move diagonally), without leaving the board. The winner is whoever manages to place their token on the opponent's token. Determine if either of them can secure victory after a finite number of turns.
MMATHS Mathathon Rounds, 2020
[u]Round 1[/u]
[b]p1.[/b] Let $n$ be a two-digit positive integer. What is the maximum possible sum of the prime factors of $n^2 - 25$ ?
[b]p2.[/b] Angela has ten numbers $a_1, a_2, a_3, ... , a_{10}$. She wants them to be a permutation of the numbers $\{1, 2, 3, ... , 10\}$ such that for each $1 \le i \le 5$, $a_i \le 2i$, and for each $6 \le i \le 10$, $a_i \le - 10$. How many ways can Angela choose $a_1$ through $a_{10}$?
[b]p3.[/b] Find the number of three-by-three grids such that
$\bullet$ the sum of the entries in each row, column, and diagonal passing through the center square is the same, and
$\bullet$ the entries in the nine squares are the integers between $1$ and $9$ inclusive, each integer appearing in exactly one square.
[u]Round 2 [/u]
[b]p4.[/b] Suppose that $P(x)$ is a quadratic polynomial such that the sum and product of its two roots are equal to each other. There is a real number $a$ that $P(1)$ can never be equal to. Find $a$.
[b]p5.[/b] Find the number of ordered pairs $(x, y)$ of positive integers such that $\frac{1}{x} +\frac{1}{y} =\frac{1}{k}$ and k is a factor of $60$.
[b]p6.[/b] Let $ABC$ be a triangle with $AB = 5$, $AC = 4$, and $BC = 3$. With $B = B_0$ and $C = C_0$, define the infinite sequences of points $\{B_i\}$ and $\{C_i\}$ as follows: for all $i \ge 1$, let $B_i$ be the foot of the perpendicular from $C_{i-1}$ to $AB$, and let $C_i$ be the foot of the perpendicular from $B_i$ to $AC$. Find $C_0C_1(AC_0 + AC_1 + AC_2 + AC_3 + ...)$.
[u]Round 3 [/u]
[b]p7.[/b] If $\ell_1, \ell_2, ... ,\ell_{10}$ are distinct lines in the plane and $p_1, ... , p_{100}$ are distinct points in the plane, then what is the maximum possible number of ordered pairs $(\ell_i, p_j )$ such that $p_j$ lies on $\ell_i$?
[b]p8.[/b] Before Andres goes to school each day, he has to put on a shirt, a jacket, pants, socks, and shoes. He can put these clothes on in any order obeying the following restrictions: socks come before shoes, and the shirt comes before the jacket. How many distinct orders are there for Andres to put his clothes on?
[b]p9. [/b]There are ten towns, numbered $1$ through $10$, and each pair of towns is connected by a road. Define a backwards move to be taking a road from some town $a$ to another town $b$ such that $a > b$, and define a forwards move to be taking a road from some town $a$ to another town $b$ such that $a < b$. How many distinct paths can Ali take from town $1$ to town $10$ under the conditions that
$\bullet$ she takes exactly one backwards move and the rest of her moves are forward moves, and
$\bullet$ the only time she visits town $10$ is at the very end?
One possible path is $1 \to 3 \to 8 \to 6 \to 7 \to 8 \to 10$.
[u]Round 4[/u]
[b]p10.[/b] How many prime numbers $p$ less than $100$ have the properties that $p^5 - 1$ is divisible by $6$ and $p^6 - 1$ is divisible by $5$?
[b]p11.[/b] Call a four-digit integer $\overline{d_1d_2d_3d_4}$ [i]primed [/i] if
1) $d_1$, $d_2$, $d_3$, and $d_4$ are all prime numbers, and
2) the two-digit numbers $\overline{d_1d_2}$ and $\overline{d_3d_4}$ are both prime numbers.
Find the sum of all primed integers.
[b]p12.[/b] Suppose that $ABC$ is an isosceles triangle with $AB = AC$, and suppose that $D$ and $E$ lie on $\overline{AB}$ and $\overline{AC}$, respectively, with $\overline{DE} \parallel \overline{BC}$. Let $r$ be the length of the inradius of triangle $ADE$. Suppose that it is possible to construct two circles of radius $r$, each tangent to one another and internally tangent to three sides of the trapezoid $BDEC$. If $\frac{BC}{r} = a + \sqrt{b}$ forpositive integers $a$ and $b$ with $b$ squarefree, then find $a + b$.
PS. You should use hide for answers. Rounds 5-7 have been posted [url=https://artofproblemsolving.com/community/c4h2800986p24675177]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2011 QEDMO 8th, 4
How many
a) bishops
b) horses
can be positioned on a chessboard at most, so that no one threatens another?