This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 563

1995 IMO Shortlist, 2

Let $ A, B$ and $ C$ be non-collinear points. Prove that there is a unique point $ X$ in the plane of $ ABC$ such that \[ XA^2 \plus{} XB^2 \plus{} AB^2 \equal{} XB^2 \plus{} XC^2 \plus{} BC^2 \equal{} XC^2 \plus{} XA^2 \plus{} CA^2.\]

2010 China National Olympiad, 3

Given complex numbers $a,b,c$, we have that $|az^2 + bz +c| \leq 1$ holds true for any complex number $z, |z| \leq 1$. Find the maximum value of $|bc|$.

1948 Putnam, A5

If $\xi_1,\ldots,\xi_n$ denote the $n$-th roots of unity, evaluate $$\prod_{1\leq i<j \leq n} (\xi_{i}-\xi_j )^2 .$$

2019 AMC 12/AHSME, 14

For a certain complex number $c$, the polynomial \[ P(x) = (x^2 - 2x + 2)(x^2 - cx + 4)(x^2 - 4x + 8)\] has exactly 4 distinct roots. What is $|c|$? $\textbf{(A) } 2 \qquad \textbf{(B) } \sqrt{6} \qquad \textbf{(C) } 2\sqrt{2} \qquad \textbf{(D) } 3 \qquad \textbf{(E) } \sqrt{10}$

1989 IMO Longlists, 70

Given that \[ \frac{\cos(x) \plus{} \cos(y) \plus{} \cos(z)}{\cos(x\plus{}y\plus{}z)} \equal{} \frac{\sin(x)\plus{} \sin(y) \plus{} \sin(z)}{\sin(x \plus{} y \plus{} z)} \equal{} a,\] show that \[ \cos(y\plus{}z) \plus{} \cos(z\plus{}x) \plus{} \cos(x\plus{}y) \equal{} a.\]

2007 iTest Tournament of Champions, 1

Let $A$ be the area of the locus of points $z$ in the complex plane that satisfy $|z+12+9i| \leq 15$. Compute $\lfloor A\rfloor$.

2010 India IMO Training Camp, 10

Let $ABC$ be a triangle. Let $\Omega$ be the brocard point. Prove that $\left(\frac{A\Omega}{BC}\right)^2+\left(\frac{B\Omega}{AC}\right)^2+\left(\frac{C\Omega}{AB}\right)^2\ge 1$

2014 HMNT, 10

Let $z$ be a complex number and k a positive integer such that $z^k$ is a positive real number other than $1$. Let $f(n)$ denote the real part of the complex number $z^n$. Assume the parabola $p(n) = an^2 +bn+c$ intersects $f(n)$ four times, at $n = 0, 1, 2, 3$. Assuming the smallest possible value of $k$, find the largest possible value of $a$.

2019 District Olympiad, 3

Let $a,b,c$ be distinct complex numbers with $|a|=|b|=|c|=1.$ If $|a+b-c|^2+|b+c-a|^2+|c+a-b|^2=12,$ prove that the points of affixes $a,b,c$ are the vertices of an equilateral triangle.

2021 Science ON grade X, 1

Consider the complex numbers $x,y,z$ such that $|x|=|y|=|z|=1$. Define the number $$a=\left (1+\frac xy\right )\left (1+\frac yz\right )\left (1+\frac zx\right ).$$ $\textbf{(a)}$ Prove that $a$ is a real number. $\textbf{(b)}$ Find the minimal and maximal value $a$ can achieve, when $x,y,z$ vary subject to $|x|=|y|=|z|=1$. [i] (Stefan Bălăucă & Vlad Robu)[/i]

1999 Dutch Mathematical Olympiad, 3

Let $ABCD$ be a square and let $\ell$ be a line. Let $M$ be the centre of the square. The diagonals of the square have length 2 and the distance from $M$ to $\ell$ exceeds 1. Let $A',B',C',D'$ be the orthogonal projections of $A,B,C,D$ onto $\ell$. Suppose that one rotates the square, such that $M$ is invariant. The positions of $A,B,C,D,A',B',C',D'$ change. Prove that the value of $AA'^2 + BB'^2 + CC'^2 + DD'^2$ does not change.

2006 Cezar Ivănescu, 2

[b]a)[/b] Let $ a,b,c $ be three complex numbers. Prove that the element $ \begin{pmatrix} a & a-b & a-b \\ 0 & b & b-c \\ 0 & 0 & c \end{pmatrix} $ has finite order in the multiplicative group of $ 3\times 3 $ complex matrices if and only if $ a,b,c $ have finite orders in the multiplicative group of complex numbers. [b]b)[/b] Prove that a $ 3\times 3 $ real matrix $ M $ has positive determinant if there exists a real number $ \lambda\in\left( 0,\sqrt[3]{4} \right) $ such that $ A^3=\lambda A+I. $ [i]Cristinel Mortici[/i]

2016 China Team Selection Test, 2

Find the smallest positive number $\lambda $ , such that for any complex numbers ${z_1},{z_2},{z_3}\in\{z\in C\big| |z|<1\}$ ,if $z_1+z_2+z_3=0$, then $$\left|z_1z_2 +z_2z_3+z_3z_1\right|^2+\left|z_1z_2z_3\right|^2 <\lambda .$$

1998 Croatia National Olympiad, Problem 1

Solve the equation $2z^3-(5+6i)z^2+9iz+1-3i=0$ over $\mathbb C$ given that one of the solutions is real.

2009 Hungary-Israel Binational, 1

Given is the convex quadrilateral $ ABCD$. Assume that there exists a point $ P$ inside the quadrilateral for which the triangles $ ABP$ and $ CDP$ are both isosceles right triangles with the right angle at the common vertex $ P$. Prove that there exists a point $ Q$ for which the triangles $ BCQ$ and $ ADQ$ are also isosceles right triangles with the right angle at the common vertex $ Q$.

2010 Harvard-MIT Mathematics Tournament, 7

Let $a_1$, $a_2$, and $a_3$ be nonzero complex numbers with non-negative real and imaginary parts. Find the minimum possible value of \[\dfrac{|a_1+a_2+a_3|}{\sqrt[3]{|a_1a_2a_3|}}.\]

1977 Miklós Schweitzer, 7

Let $ G$ be a locally compact solvable group, let $ c_1,\ldots, c_n$ be complex numbers, and assume that the complex-valued functions $ f$ and $ g$ on $ G$ satisfy \[ \sum_{k=1}^n c_k f(xy^k)=f(x)g(y) \;\textrm{for all} \;x,y \in G \ \ .\] Prove that if $ f$ is a bounded function and \[ \inf_{x \in G} \textrm{Re} f(x) \chi(x) >0\] for some continuous (complex) character $ \chi$ of $ G$, then $ g$ is continuous. [i]L. Szekelyhidi[/i]

2001 India IMO Training Camp, 1

Complex numbers $\alpha$ , $\beta$ , $\gamma$ have the property that $\alpha^k +\beta^k +\gamma^k$ is an integer for every natural number $k$. Prove that the polynomial \[(x-\alpha)(x-\beta )(x-\gamma )\] has integer coefficients.

2018 District Olympiad, 4

Let $n\ge 2$ be a natural number. Find all complex numbers $z$ which simultaneously satisfy the relations $\text{a)}\ z^n + z^{n - 1} + \ldots + z^2 + |z| = n;$ $\text{b)}\ |z|^{n- 1} + |z|^{n - 2} + \ldots + |z|^2 + z = n z^n.$

1972 Yugoslav Team Selection Test, Problem 1

Given non-zero real numbers $u,v,w,x,y,z$, how many different possibilities are there for the signs of these numbers if $$(u+ix)(v+iy)(w+iz)=i?$$

1999 National High School Mathematics League, 2

Let $a,b,c$ be real numbers, $z_{1},z_{2},z_{3}$ be complex numbers such that $\begin{cases} \displaystyle|z_1|=|z_2|=|z_3|=1\\ \displaystyle\frac{z_{1}}{z_{2}}+\frac{z_{2}}{z_{3}}+\frac{z_{3}}{z_{1}}=1\\ \end{cases}$ Find $|az_{1}+bz_{2}+cz_{3}|$.

1998 VJIMC, Problem 3

Show that all complex roots of the polynomial $P(z)=a_0z^n+a_1z^{n-1}+\ldots+a_{n-1}z+a_n$, where $0<a_0<\ldots<a_n$, satisfy $|z|>1$.

2016 HMNT, 3

Complex number $\omega$ satisfies $\omega^5 = 2$. Find the sum of all possible values of $\omega^4 + \omega^3 + \omega^2 + \omega + 1$.

1988 AIME Problems, 11

Let $w_1, w_2, \dots, w_n$ be complex numbers. A line $L$ in the complex plane is called a mean line for the points $w_1, w_2, \dots, w_n$ if $L$ contains points (complex numbers) $z_1, z_2, \dots, z_n$ such that \[ \sum_{k = 1}^n (z_k - w_k) = 0. \] For the numbers $w_1 = 32 + 170i$, $w_2 = -7 + 64i$, $w_3 = -9 +200i$, $w_4 = 1 + 27i$, and $w_5 = -14 + 43i$, there is a unique mean line with $y$-intercept 3. Find the slope of this mean line.

PEN K Problems, 4

Find all functions $f: \mathbb{N}\to \mathbb{N}$ such that for all $n\in \mathbb{N}$: \[f(f(f(n)))+f(f(n))+f(n)=3n.\]