This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 563

2019 China Team Selection Test, 1

Given complex numbers $x,y,z$, with $|x|^2+|y|^2+|z|^2=1$. Prove that: $$|x^3+y^3+z^3-3xyz| \le 1$$

2013 Princeton University Math Competition, 2

Let $\gamma$ be the incircle of $\triangle ABC$ (i.e. the circle inscribed in $\triangle ABC$) and $I$ be the center of $\gamma$. Let $D$, $E$ and $F$ be the feet of the perpendiculars from $I$ to $BC$, $CA$, and $AB$ respectively. Let $D'$ be the point on $\gamma$ such that $DD'$ is a diameter of $\gamma$. Suppose the tangent to $\gamma$ through $D$ intersects the line $EF$ at $P$. Suppose the tangent to $\gamma$ through $D'$ intersects the line $EF$ at $Q$. Prove that $\angle PIQ + \angle DAD' = 180^{\circ}$.

1992 National High School Mathematics League, 5

Points on complex plane that complex numbers $z_1,z_2$ corresponding to are $A,B$, and $|z_1|=4,4z_1^2-2z_1z_2+z_2^2=0$. $O$ is original point, then the area of $\triangle OAB$ is $\text{(A)}8\sqrt3\qquad\text{(B)}4\sqrt3\qquad\text{(C)}6\sqrt3\qquad\text{(D)}12\sqrt3$

2001 AIME Problems, 14

There are $2n$ complex numbers that satisfy both $z^{28}-z^{8}-1=0$ and $|z|=1$. These numbers have the form $z_{m}=\cos\theta_{m}+i\sin\theta_{m}$, where $0\leq\theta_{1}<\theta_{2}< \dots <\theta_{2n}<360$ and angles are measured in degrees. Find the value of $\theta_{2}+\theta_{4}+\dots+\theta_{2n}$.

2009 Purple Comet Problems, 19

If $a$ and $b$ are complex numbers such that $a^2 + b^2 = 5$ and $a^3 + b^3 = 7$, then their sum, $a + b$, is real. The greatest possible value for the sum $a + b$ is $\tfrac{m+\sqrt{n}}{2}$ where $m$ and $n$ are integers. Find $n.$

2012 AIME Problems, 6

The complex numbers $z$ and $w$ satisfy $z^{13} = w$, $w^{11} = z$, and the imaginary part of $z$ is $\sin\left(\frac{m\pi}n\right)$ for relatively prime positive integers $m$ and $n$ with $m < n$. Find $n$.

1996 USAMO, 1

Prove that the average of the numbers $n \sin n^{\circ} \; (n = 2,4,6,\ldots,180)$ is $\cot 1^{\circ}$.

the 6th XMO, 2

Assume that complex numbers $z_1,z_2,...,z_n$ satisfy $|z_i-z_j| \le 1$ for any $1 \le i <j \le n$. Let $$S= \sum_{1 \le i <j \le n} |z_i-z_j|^2.$$ (1) If $n = 6063$, find the maximum value of $S$. (2) If $n= 2021$, find the maximum value of $S$.

2010 Gheorghe Vranceanu, 2

Let be three complex numbers $ z,t,u, $ whose affixes in the complex plane form a triangle $ \triangle . $ [b]a)[/b] Let be three non-complex numbers $ a,b,c $ that sum up to $ 0. $ Prove that $$ |az+bt+cu|=|at+bu+cz|=|au+bz+ct| $$ if $ \triangle $ is equilateral. [b]b)[/b] Show that $ \triangle $ is equilateral if $$ |z+2t-3u|=|t+2u-3z|=|u+2z-3t| . $$

2023 District Olympiad, P3

Let $n\geqslant 2$ be an integer. Determine all complex numbers $z{}$ which satisfy \[|z^{n+1}-z^n|\geqslant|z^{n+1}-1|+|z^{n+1}-z|.\]

2012 Graduate School Of Mathematical Sciences, The Master Course, Kyoto University, A1

Find the smallest positive integer value of $N$ such that field $K=\mathbb{Q}(\sqrt{N},\ \sqrt{i+1})$, where $i=\sqrt{-1}$, is Galois extension on $\mathbb{Q}$, then find the Galois group $Gal(K/\mathbb{Q}).$

2004 Germany Team Selection Test, 3

We attach to the vertices of a regular hexagon the numbers $1$, $0$, $0$, $0$, $0$, $0$. Now, we are allowed to transform the numbers by the following rules: (a) We can add an arbitrary integer to the numbers at two opposite vertices. (b) We can add an arbitrary integer to the numbers at three vertices forming an equilateral triangle. (c) We can subtract an integer $t$ from one of the six numbers and simultaneously add $t$ to the two neighbouring numbers. Can we, just by acting several times according to these rules, get a cyclic permutation of the initial numbers? (I. e., we started with $1$, $0$, $0$, $0$, $0$, $0$; can we now get $0$, $1$, $0$, $0$, $0$, $0$, or $0$, $0$, $1$, $0$, $0$, $0$, or $0$, $0$, $0$, $1$, $0$, $0$, or $0$, $0$, $0$, $0$, $1$, $0$, or $0$, $0$, $0$, $0$, $0$, $1$ ?)

2013 Harvard-MIT Mathematics Tournament, 20

The polynomial $f(x)=x^3-3x^2-4x+4$ has three real roots $r_1$, $r_2$, and $r_3$. Let $g(x)=x^3+ax^2+bx+c$ be the polynomial which has roots $s_1$, $s_2$, and $s_3$, where $s_1=r_1+r_2z+r_3z^2$, $s_2=r_1z+r_2z^2+r_3$, $s_3=r_1z^2+r_2+r_3z$, and $z=\frac{-1+i\sqrt3}2$. Find the real part of the sum of the coefficients of $g(x)$.

2011 N.N. Mihăileanu Individual, 1

Let be a natural number $ n\ge 2, $ two complex numbers $ p,q, $ and four matrices $ A,B,C,D\in\mathcal{M}_n(\mathbb{C}) $ such that $ A+B=C+D=pI,AB+CD=qI $ and $ ABCD=0. $ Show that $ BCDA=0. $ [i]Marius Cavachi[/i]

1996 China Team Selection Test, 3

Does there exist non-zero complex numbers $a, b, c$ and natural number $h$ such that if integers $k, l, m$ satisfy $|k| + |l| + |m| \geq 1996$, then $|ka + lb + mc| > \frac {1}{h}$ is true?

2022-23 IOQM India, 14

Let $x,y,z$ be complex numbers such that\\ $\hspace{ 2cm} \frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=9$\\ $\hspace{ 2cm} \frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=64$\\ $\hspace{ 2cm} \frac{x^3}{y+z}+\frac{y^3}{z+x}+\frac{z^3}{x+y}=488$\\ \\ If $\frac{x}{yz}+\frac{y}{zx}+\frac{z}{xy}=\frac{m}{n}$ where $m,n$ are positive integers with $GCD(m,n)=1$, find $m+n$.

2012 India IMO Training Camp, 1

A quadrilateral $ABCD$ without parallel sides is circumscribed around a circle with centre $O$. Prove that $O$ is a point of intersection of middle lines of quadrilateral $ABCD$ (i.e. barycentre of points $A,\,B,\,C,\,D$) iff $OA\cdot OC=OB\cdot OD$.

2021 BMT, T4

Let $z_1$, $z_2$, and $z_3$ be the complex roots of the equation $(2z -3\overline{z})^3 = 54i+54$. Compute the area of the triangle formed by $z_1$, $z_2$, and $z_3$ when plotted in the complex plane.

2009 AMC 12/AHSME, 21

Let $ p(x) \equal{} x^3 \plus{} ax^2 \plus{} bx \plus{} c$, where $ a$, $ b$, and $ c$ are complex numbers. Suppose that \[ p(2009 \plus{} 9002\pi i) \equal{} p(2009) \equal{} p(9002) \equal{} 0 \]What is the number of nonreal zeros of $ x^{12} \plus{} ax^8 \plus{} bx^4 \plus{} c$? $ \textbf{(A)}\ 4\qquad \textbf{(B)}\ 6\qquad \textbf{(C)}\ 8\qquad \textbf{(D)}\ 10\qquad \textbf{(E)}\ 12$

2022 Belarusian National Olympiad, 10.4

On the semicircle with diameter $AB$ and center $O$ point $D$ is marked. Points $E$ and $F$ are the midpoints of minor arcs $AD$ and $BD$ respectively. It turned out that the line connecting orthocenters of $ADF$ and $BDE$ passes through $O$ Find $\angle AOD$

1985 National High School Mathematics League, 5

Let $Z,W,\lambda$ be complex numbers, $|\lambda|\neq1$. Which statements are correct about the equation $\overline{Z}-\lambda Z=W$? I. $Z=\frac{\overline{\lambda}W+\overline{W}}{1-|\lambda|^2}$ is a solution to the equation. II. The equation has only one solution. III. The equation has two solutions. IV. The equation has infinitely many solutions. $\text{(A)}$ Only I and II. $\text{(B)}$ Only I and III. $\text{(C)}$ Only I and IV. $\text{(D)}$ None of $\text{(A)(B)(C)}$.

2011 Bogdan Stan, 2

Show that among any nine complex numbers whose affixes in the complex plane lie on the unit circle, there are at least two of them such that the modulus of their sum is greater than $ \sqrt 2. $ [i]Ion Tecu[/i]

2013 Harvard-MIT Mathematics Tournament, 8

Let $x,y$ be complex numbers such that $\dfrac{x^2+y^2}{x+y}=4$ and $\dfrac{x^4+y^4}{x^3+y^3}=2$. Find all possible values of $\dfrac{x^6+y^6}{x^5+y^5}$.

1996 China Team Selection Test, 3

Does there exist non-zero complex numbers $a, b, c$ and natural number $h$ such that if integers $k, l, m$ satisfy $|k| + |l| + |m| \geq 1996$, then $|ka + lb + mc| > \frac {1}{h}$ is true?

2010 Harvard-MIT Mathematics Tournament, 7

Let $a,b,c,x,y,$ and $z$ be complex numbers such that \[a=\dfrac{b+c}{x-2},\qquad b=\dfrac{c+a}{y-2},\qquad c=\dfrac{a+b}{z-2}.\] If $xy+yz+xz=67$ and $x+y+z=2010$, find the value of $xyz$.