Found problems: 563
2010 AIME Problems, 7
Let $ P(z) \equal{} z^3 \plus{} az^2 \plus{} bz \plus{} c$, where $ a$, $ b$, and $ c$ are real. There exists a complex number $ w$ such that the three roots of $ P(z)$ are $ w \plus{} 3i$, $ w \plus{} 9i$, and $ 2w \minus{} 4$, where $ i^2 \equal{} \minus{} 1$. Find $ |a \plus{} b \plus{} c|$.
2011 Romania National Olympiad, 2
Find all numbers $ n $ for which there exist three (not necessarily distinct) roots of unity of order $ n $ whose sum is $
1. $
1991 Vietnam Team Selection Test, 3
Let $\{x\}$ be a sequence of positive reals $x_1, x_2, \ldots, x_n$, defined by: $x_1 = 1, x_2 = 9, x_3=9, x_4=1$. And for $n \geq 1$ we have:
\[x_{n+4} = \sqrt[4]{x_{n} \cdot x_{n+1} \cdot x_{n+2} \cdot x_{n+3}}.\]
Show that this sequence has a finite limit. Determine this limit.
1969 Czech and Slovak Olympiad III A, 4
Determine all complex numbers $z$ such that \[\Bigl|z-\bigl|z+|z|\bigr|\Bigr|-|z|\sqrt3\ge0\] and draw the set of all such $z$ in complex plane.
2007 Serbia National Math Olympiad, 2
In a scalene triangle $ABC , AD, BE , CF$ are the angle bisectors $(D \in BC , E \in AC , F \in AB)$. Points $K_{a}, K_{b}, K_{c}$ on the incircle of triangle $ABC$ are such that $DK_{a}, EK_{b}, FK_{c}$ are tangent to the incircle and $K_{a}\not\in BC , K_{b}\not\in AC , K_{c}\not\in AB$. Let $A_{1}, B_{1}, C_{1}$ be the midpoints of sides $BC , CA, AB$ , respectively. Prove that the lines $A_{1}K_{a}, B_{1}K_{b}, C_{1}K_{c}$ intersect on the incircle of triangle $ABC$.
2019 Ramnicean Hope, 2
Let be three complex numbers $ a,b,c $ such that $ |a|=|b|=|c|=1=a^2+b^2+c^2. $
Calculate $ \left| a^{2019} +b^{2019} +c^{2019} \right| . $
[i]Costică Ambrinoc[/i]
2003 National High School Mathematics League, 14
$A,B,C$ are points that three complex numbers $z_0=a\text{i},z_1=\frac{1}{2}+b\text{i},z_2=1+c\text{i}(a,b,c\in\mathbb{R})$ refer to on complex plane (not collinear). Prove that curve $Z=Z_0\cos^4t+2Z_1\cos^2t\sin^2t+Z_2\sin^4t(t\in\mathbb{R})$ has only one common point with the perpendicular bisector of $AC$, and find the point.
1977 Czech and Slovak Olympiad III A, 3
Consider any complex units $Z,W$ with $\text{Im}\ Z\ge0,\text{Re}\,W\ge 0.$ Determine and draw the locus of all possible sums $S=Z+W$ in the complex plane.
PEN Q Problems, 4
A prime $p$ has decimal digits $p_{n}p_{n-1} \cdots p_0$ with $p_{n}>1$. Show that the polynomial $p_{n}x^{n} + p_{n-1}x^{n-1}+\cdots+ p_{1}x + p_0$ cannot be represented as a product of two nonconstant polynomials with integer coefficients
1965 Miklós Schweitzer, 3
Let $ a,b_0,b_1,b_2,...,b_{n\minus{}1}$ be complex numbers, $ A$ a complex square matrix of order $ p$, and $ E$ the unit matrix of order $ p$. Assuming that the eigenvalues of $ A$ are given, determine the eigenvalues of the matrix
\[ B\equal{}\begin{pmatrix} b_0E&b_1A&b_2A^2&\cdots&b_{n\minus{}1}A^{n\minus{}1} \\
ab_{n\minus{}1}A^{n\minus{}1}&b_0E&b_1A&\cdots&b_{n\minus{}2}A^{n\minus{}2}\\
ab_{n\minus{}2}A^{n\minus{}2}&ab_{n\minus{}1}A^{n\minus{}1}&b_0E&\cdots&b_{n\minus{}3}A^{n\minus{}3}\\
\vdots&\vdots&\vdots&\ddots&\vdots&\\
ab_1A&ab_2A^2&ab_3A^3&\cdots&b_0E
\end{pmatrix}\quad\]
1968 IMO Shortlist, 23
Find all complex numbers $m$ such that polynomial
\[x^3 + y^3 + z^3 + mxyz\]
can be represented as the product of three linear trinomials.
2016 Kosovo National Mathematical Olympiad, 3
Let be $a,b,c$ complex numbers such that $|a|=|b|=|c|=r$ then show that
$\left | \frac{ab+bc+ca}{a+b+c}\right|=r$
2010 Laurențiu Panaitopol, Tulcea, 3
Let be a complex number $ z $ having the property that $ \Re \left( z^n \right) >\Im \left( z^n \right) , $ for any natural numbers $ n. $
Show that $ z $ is a positive real number.
[i]Laurențiu Panaitopol[/i]
2014 Online Math Open Problems, 29
Let $ABC$ be a triangle with circumcenter $O$, incenter $I$, and circumcircle $\Gamma$. It is known that $AB = 7$, $BC = 8$, $CA = 9$. Let $M$ denote the midpoint of major arc $\widehat{BAC}$ of $\Gamma$, and let $D$ denote the intersection of $\Gamma$ with the circumcircle of $\triangle IMO$ (other than $M$). Let $E$ denote the reflection of $D$ over line $IO$. Find the integer closest to $1000 \cdot \frac{BE}{CE}$.
[i]Proposed by Evan Chen[/i]
2000 CentroAmerican, 3
Let $ ABCDE$ be a convex pentagon. If $ P$, $ Q$, $ R$ and $ S$ are the respective centroids of the triangles $ ABE$, $ BCE$, $ CDE$ and $ DAE$, show that $ PQRS$ is a parallelogram and its area is $ 2/9$ of that of $ ABCD$.
2008 China Team Selection Test, 3
Let $ z_{1},z_{2},z_{3}$ be three complex numbers of moduli less than or equal to $ 1$. $ w_{1},w_{2}$ are two roots of the equation $ (z \minus{} z_{1})(z \minus{} z_{2}) \plus{} (z \minus{} z_{2})(z \minus{} z_{3}) \plus{} (z \minus{} z_{3})(z \minus{} z_{1}) \equal{} 0$. Prove that, for $ j \equal{} 1,2,3$, $\min\{|z_{j} \minus{} w_{1}|,|z_{j} \minus{} w_{2}|\}\leq 1$ holds.
1989 Spain Mathematical Olympiad, 5
Consider the set $D$ of all complex numbers of the form $a+b\sqrt{-13}$ with $a,b \in Z$. The number $14 = 14+0\sqrt{-13}$ can be written as a product of two elements of $D$: $14 = 2 \cdot 7$. Find all possible ways to express $14$ as a product of two elements of $D$.
2015 AMC 12/AHSME, 24
Rational numbers $a$ and $b$ are chosen at random among all rational numbers in the interval $[0,2)$ that can be written as fractions $\tfrac nd$ where $n$ and $d$ are integers with $1\leq d\leq 5$. What is the probability that \[(\cos(a\pi)+i\sin(b\pi))^4\] is a real number?
$\textbf{(A) }\dfrac3{50}\qquad\textbf{(B) }\dfrac4{25}\qquad\textbf{(C) }\dfrac{41}{200}\qquad\textbf{(D) }\dfrac6{25}\qquad\textbf{(E) }\dfrac{13}{50}$
2012 Gheorghe Vranceanu, 1
[b]a)[/b] Find all $ 2\times 2 $ complex matrices $ A $ which have the property that there are two complex numbers $ \alpha ,\gamma $ with $ \alpha \neq \text{tr} (A) $ or $ \gamma\neq \det (A) $ such that $ A^2-\alpha A+\gamma I=0. $
[b]b)[/b] Consider $ B\not\in\{ 0,I\} $ as a matrix having the property mentioned at [b]a).[/b]
Solve in the complex numbers the system $ xB-yI-B^2=xB^2-yI-B^4=0. $
[i]Adrian Troie[/i]
1999 AIME Problems, 9
A function $f$ is defined on the complex numbers by $f(z)=(a+bi)z,$ where $a$ and $b$ are positive numbers. This function has the property that the image of each point in the complex plane is equidistant from that point and the origin. Given that $|a+bi|=8$ and that $b^2=m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$
2011 ELMO Shortlist, 8
Let $n>1$ be an integer and $a,b,c$ be three complex numbers such that $a+b+c=0$ and $a^n+b^n+c^n=0$. Prove that two of $a,b,c$ have the same magnitude.
[i]Evan O'Dorney.[/i]
2023 District Olympiad, P2
Let $ABC$ be an equilateral triangle. On the small arc $AB{}$ of its circumcircle $\Omega$, consider the point $N{}$ such that the small arc $NB$ measures $30^\circ{}$. The perpendiculars from $N{}$ onto $AC$ and $AB$ intersect $\Omega$ again at $P{}$ and $Q{}$ respectively. Let $H_1,H_2$ and $H_3$ be the orthocenters of the triangles $NAB, QBC$ and $CAP$ respectively.
[list=a]
[*]Prove that the triangle $NPQ$ is equilateral.
[*]Prove that the triangle $H_1H_2H_3$ is equilateral.
[/list]
1998 National High School Mathematics League, 8
Complex number $z=\cos\theta+\text{i}\sin\theta(0\leq\theta\leq\pi)$. Points that three complex numbers $z,(1+\text{i})z,2\overline{z}$ refer to on complex plane are $P,Q,R$. When $P,Q,R$ are not collinear, $PQSR$ is a parallelogram. The longest distance between $S$ and the original point is________.
2019 Jozsef Wildt International Math Competition, W. 44
We consider a natural number $n$, $n \geq 2$ and the matrices
\begin{tabular}{cc}
$A= \begin{pmatrix} 1 & 2 & 3 & \cdots & n\\ n & 1 & 2 & \cdots & n - 1\\ n - 1 & n & 1 & \cdots & n - 2\\ \cdots & \cdots & \cdots & \cdots & \cdots\\2 & 3 & 4 & \cdots & 1 \end{pmatrix}$
\end{tabular}
Show that$$\epsilon^ndet\left(I_n-A^{2n}\right)+\epsilon^{n-1}det\left(\epsilon I_n-A^{2n}\right)+\epsilon^{n-2}det\left(\epsilon^2 I_n-A^{2n}\right)+\cdots +det\left(\epsilon^n I_n-A^{2n}\right)$$ $$=n(-1)^{n-1}\left[\frac{n^n(n+1)}{2}\right]^{2n^2-4n}\left(1+(n+1)^{2n}\left(2n+(-1)^n{{2n}\choose{n}}\right)\right)$$where $\epsilon \in \mathbb{C}\backslash \mathbb{R}$, $\epsilon^{n+1}=1$
2006 Romania Team Selection Test, 1
Let $ABC$ and $AMN$ be two similar triangles with the same orientation, such that $AB=AC$, $AM=AN$ and having disjoint interiors. Let $O$ be the circumcenter of the triangle $MAB$. Prove that the points $O$, $C$, $N$, $A$ lie on the same circle if and only if the triangle $ABC$ is equilateral.
[i]Valentin Vornicu[/i]