This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 348

2010 Contests, 2

Prove that for any real number $ x$ the following inequality is true: $ \max\{|\sin x|, |\sin(x\plus{}2010)|\}>\dfrac1{\sqrt{17}}$

2013 Today's Calculation Of Integral, 887

For the function $f(x)=\int_0^x \frac{dt}{1+t^2}$, answer the questions as follows. Note : Please solve the problems without using directly the formula $\int \frac{1}{1+x^2}\ dx=\tan^{-1}x +C$ for Japanese High School students those who don't study arc sin x, arc cos x, arc tanx. (1) Find $f(\sqrt{3})$ (2) Find $\int_0^{\sqrt{3}} xf(x)\ dx$ (3) Prove that for $x>0$. $f(x)+f\left(\frac{1}{x}\right)$ is constant, then find the value.

2007 Harvard-MIT Mathematics Tournament, 6

The elliptic curve $y^2=x^3+1$ is tangent to a circle centered at $(4,0)$ at the point $(x_0,y_0)$. Determine the sum of all possible values of $x_0$.

2004 Iran MO (3rd Round), 15

This problem is easy but nobody solved it. point $A$ moves in a line with speed $v$ and $B$ moves also with speed $v'$ that at every time the direction of move of $B$ goes from $A$.We know $v \geq v'$.If we know the point of beginning of path of $A$, then $B$ must be where at first that $B$ can catch $A$.

2011 Moldova Team Selection Test, 1

Find all real numbers $x, y$ such that: $y+3\sqrt{x+2}=\frac{23}2+y^2-\sqrt{49-16x}$

2025 Romania National Olympiad, 1

Find all pairs of twice differentiable functions $f,g \colon \mathbb{R} \to \mathbb{R}$, with their second derivative being continuous, such that the following holds for all $x,y \in \mathbb{R}$: \[(f(x)-g(y))(f'(x)-g'(y))(f''(x)-g''(y))=0\]

1975 Canada National Olympiad, 7

A function $ f(x)$ is [i]periodic[/i] if there is a positive number $ p$ such that $ f(x\plus{}p) \equal{} f(x)$ for all $ x$. For example, $ \sin x$ is periodic with period $ 2 \pi$. Is the function $ \sin(x^2)$ periodic? Prove your assertion.

2012 Canadian Mathematical Olympiad Qualification Repechage, 6

Determine whether there exist two real numbers $a$ and $b$ such that both $(x-a)^3+ (x-b)^2+x$ and $(x-b)^3 + (x-a)^2 +x$ contain only real roots.

2021 Simon Marais Mathematical Competition, B4

[i]The following problem is open in the sense that the answer to part (b) is not currently known. A proof of part (a) will be awarded 5 points. Up to 7 additional points may be awarded for progress on part (b).[/i] Let $p(x)$ be a polynomial of degree $d$ with coefficients belonging to the set of rational numbers $\mathbb{Q}$. Suppose that, for each $1 \le k \le d-1$, $p(x)$ and its $k$th derivative $p^{(k)}(x)$ have a common root in $\mathbb{Q}$; that is, there exists $r_k \in \mathbb{Q}$ such that $p(r_k) = p^{(k)}(r_k) = 0$. (a) Prove that if $d$ is prime then there exist constants $a, b, c \in \mathbb{Q}$ such that \[ p(x) = c(ax + b)^d. \] (b) For which integers $d \ge 2$ does the conclusion of part (a) hold?

2013 Today's Calculation Of Integral, 893

Find the minimum value of $f(x)=\int_0^{\frac{\pi}{4}} |\tan t-x|dt.$

2009 Putnam, A2

Functions $ f,g,h$ are differentiable on some open interval around $ 0$ and satisfy the equations and initial conditions \begin{align*}f'&=2f^2gh+\frac1{gh},\ f(0)=1,\\ g'&=fg^2h+\frac4{fh},\ g(0)=1,\\ h'&=3fgh^2+\frac1{fg},\ h(0)=1.\end{align*} Find an explicit formula for $ f(x),$ valid in some open interval around $ 0.$

2009 Harvard-MIT Mathematics Tournament, 4

Let $P$ be a fourth degree polynomial, with derivative $P^\prime$, such that $P(1)=P(3)=P(5)=P^\prime (7)=0$. Find the real number $x\neq 1,3,5$ such that $P(x)=0$.

VI Soros Olympiad 1999 - 2000 (Russia), 11.2

Let $$f(x) = (...((x - 2)^2 - 2)^2 - 2)^2... - 2)^2$$ (here there are $n$ brackets $( )$). Find $f''(0)$

2010 Iran MO (3rd Round), 4

For each polynomial $p(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0$ we define it's derivative as this and we show it by $p'(x)$: \[p'(x)=na_nx^{n-1}+(n-1)a_{n-1}x^{n-2}+...+2a_2x+a_1\] a) For each two polynomials $p(x)$ and $q(x)$ prove that:(3 points) \[(p(x)q(x))'=p'(x)q(x)+p(x)q'(x)\] b) Suppose that $p(x)$ is a polynomial with degree $n$ and $x_1,x_2,...,x_n$ are it's zeros. prove that:(3 points) \[\frac{p'(x)}{p(x)}=\sum_{i=1}^{n}\frac{1}{x-x_i}\] c) $p(x)$ is a monic polynomial with degree $n$ and $z_1,z_2,...,z_n$ are it's zeros such that: \[|z_1|=1, \quad \forall i\in\{2,..,n\}:|z_i|\le1\] Prove that $p'(x)$ has at least one zero in the disc with length one with the center $z_1$ in complex plane. (disc with length one with the center $z_1$ in complex plane: $D=\{z \in \mathbb C: |z-z_1|\le1\}$)(20 points)

2009 Indonesia TST, 3

Let $ x,y,z$ be real numbers. Find the minimum value of $ x^2\plus{}y^2\plus{}z^2$ if $ x^3\plus{}y^3\plus{}z^3\minus{}3xyz\equal{}1$.

2006 Romania Team Selection Test, 4

Let $p$, $q$ be two integers, $q\geq p\geq 0$. Let $n \geq 2$ be an integer and $a_0=0, a_1 \geq 0, a_2, \ldots, a_{n-1},a_n = 1$ be real numbers such that \[ a_{k} \leq \frac{ a_{k-1} + a_{k+1} } 2 , \ \forall \ k=1,2,\ldots, n-1 . \] Prove that \[ (p+1) \sum_{k=1}^{n-1} a_k^p \geq (q+1) \sum_{k=1}^{n-1} a_k^q . \]

2010 Today's Calculation Of Integral, 615

For $0\leq a\leq 2$, find the minimum value of $\int_0^2 \left|\frac{1}{1+e^x}-\frac{1}{1+e^a}\right|\ dx.$ [i]2010 Kyoto Institute of Technology entrance exam/Textile e.t.c.[/i]

1991 Arnold's Trivium, 20

Find the derivative of the solution of the equation $\ddot{x} =x + A\dot{x}^2$, with initial conditions $x(0) = 1$, $\dot{x}(0) = 0$, with respect to the parameter $A$ for $A = 0$.

1985 Iran MO (2nd round), 5

Let $f: \mathbb R \to \mathbb R$ and $g: \mathbb R \to \mathbb R$ be two functions satisfying \[\forall x,y \in \mathbb R: \begin{cases} f(x+y)=f(x)f(y),\\ f(x)= x g(x)+1\end{cases} \quad \text{and} \quad \lim_{x \to 0} g(x)=1.\] Find the derivative of $f$ in an arbitrary point $x.$

1957 AMC 12/AHSME, 10

The graph of $ y \equal{} 2x^2 \plus{} 4x \plus{} 3$ has its: $ \textbf{(A)}\ \text{lowest point at } {(\minus{}1,9)}\qquad \textbf{(B)}\ \text{lowest point at } {(1,1)}\qquad \\ \textbf{(C)}\ \text{lowest point at } {(\minus{}1,1)}\qquad \textbf{(D)}\ \text{highest point at } {(\minus{}1,9)}\qquad \\ \textbf{(E)}\ \text{highest point at } {(\minus{}1,1)}$

2022 JHMT HS, 2

Suppose that $f$ is a differentiable function such that $f(0) = 20$ and $|f'(x)| \leq 4$ for all real numbers $x$. Let $a$ and $b$ be real numbers such that [i]every[/i] such function $f$ satisfies $a \leq f(22) \leq b$. Find the smallest possible value of $|a| + |b|$.

Oliforum Contest I 2008, 3

Let $ a,b,c$ be three pairwise distinct real numbers such that $ a\plus{}b\plus{}c\equal{}6\equal{}ab\plus{}bc\plus{}ca\minus{}3$. Prove that $ 0<abc<4$.

2024 Mongolian Mathematical Olympiad, 1

Let $P(x)$ and $Q(x)$ be polynomials with nonnegative coefficients. We denote by $P'(x)$ the derivative of $P(x)$. Suppose that $P(0)=Q(0)=0$ and $Q(1) \leq 1 \leq P'(0)$. $(1)$ Prove that $0 \leq Q(x) \leq x \leq P(x)$ for all $0 \leq x \leq 1$. $(2)$ Prove that $P(Q(x)) \leq Q(P(x))$ for all $0 \leq x \leq 1$. [i]Proposed by Otgonbayar Uuye.[/i]

1979 Chisinau City MO, 180

It is known that for $0\le x \le 1$ the square trinomial $f (x)$ satisfies the condition $|f(x) | \le 1$. Show that $| f '(0) | \le 8.$

1967 Spain Mathematical Olympiad, 8

To obtain the value of a polynomial of degree $n$, whose coefficients are $$a_0, a_1, . . . ,a_n$$ (starting with the term of highest degree), when the variable $x$ is given the value $b$, the process indicated in the attached flowchart can be applied, which develops the actions required to apply Ruffini's rule. It is requested to build another flowchart analogous that allows to express the calculation of the value of the derivative of the given polynomial, also for $x = b$. [img]https://cdn.artofproblemsolving.com/attachments/a/a/27563a0e97e74553a270fcd743f22176aed83b.png[/img]