This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 40

1993 Baltic Way, 20

Let $ \mathcal Q$ be a unit cube. We say that a tetrahedron is [b]good[/b] if all its edges are equal and all of its vertices lie on the boundary of $ \mathcal Q$. Find all possible volumes of good tetrahedra.

1996 AIME Problems, 4

A wooden cube, whose edges are one centimeter long, rests on a horizontal surface. Illuminated by a point source of light that is $x$ centimeters directly above an upper vertex, the cube casts a shadow on the horizontal surface. The area of the shadow, which does not inclued the area beneath the cube is 48 square centimeters. Find the greatest integer that does not exceed $1000x.$

2002 Taiwan National Olympiad, 6

Let $A,B,C$ be fixed points in the plane , and $D$ be a variable point on the circle $ABC$, distinct from $A,B,C$ . Let $I_{A},I_{B},I_{C},I_{D}$ be the Simson lines of $A,B,C,D$ with respect to triangles $BCD,ACD,ABD,ABC$ respectively. Find the locus of the intersection points of the four lines $I_{A},I_{B},I_{C},I_{D}$ when point $D$ varies.

Indonesia MO Shortlist - geometry, g3.3

Let $ABCD$ be a trapezoid (quadrilateral with one pair of parallel sides) such that $AB < CD$. Suppose that $AC$ and $BD$ meet at $E$ and $AD$ and $BC$ meet at $F$. Construct the parallelograms $AEDK$ and $BECL$. Prove that $EF$ passes through the midpoint of the segment $KL$.

2011 Costa Rica - Final Round, 1

Let $ABC$ be a triangle with orthocenter $H$. Let $P,Q,R$ be the reflections of $H$ with respect to sides $BC,AC,AB$, respectively. Show that $H$ is incenter of $PQR$.

2014 NIMO Problems, 5

Let $ABC$ be a triangle with $AB = 130$, $BC = 140$, $CA = 150$. Let $G$, $H$, $I$, $O$, $N$, $K$, $L$ be the centroid, orthocenter, incenter, circumenter, nine-point center, the symmedian point, and the de Longchamps point. Let $D$, $E$, $F$ be the feet of the altitudes of $A$, $B$, $C$ on the sides $\overline{BC}$, $\overline{CA}$, $\overline{AB}$. Let $X$, $Y$, $Z$ be the $A$, $B$, $C$ excenters and let $U$, $V$, $W$ denote the midpoints of $\overline{IX}$, $\overline{IY}$, $\overline{IZ}$ (i.e. the midpoints of the arcs of $(ABC)$.) Let $R$, $S$, $T$ denote the isogonal conjugates of the midpoints of $\overline{AD}$, $\overline{BE}$, $\overline{CF}$. Let $P$ and $Q$ denote the images of $G$ and $H$ under an inversion around the circumcircle of $ABC$ followed by a dilation at $O$ with factor $\frac 12$, and denote by $M$ the midpoint of $\overline{PQ}$. Then let $J$ be a point such that $JKLM$ is a parallelogram. Find the perimeter of the convex hull of the self-intersecting $17$-gon $LETSTRADEBITCOINS$ to the nearest integer. A diagram has been included but may not be to scale. [asy] size(6cm); import olympiad; import cse5; pair A = dir(110); pair B = dir(210); pair C = dir(330); pair D = foot(A,B,C); pair E = foot(B,C,A); pair F = foot(C,A,B); pair G = centroid(A,B,C); pair H = orthocenter(A,B,C); pair I = incenter(A,B,C); pair isocon(pair targ) { return extension(A,2*foot(targ,I,A)-targ, C,2*foot(targ,I,C)-targ); } pair O = circumcenter(A,B,C); pair K = isocon(G); pair N = midpoint(O--H); pair U = extension(O,midpoint(B--C),A,I); pair V = extension(O,midpoint(C--A),B,I); pair W = extension(O,midpoint(A--B),C,I); pair X = -I + 2*U; pair Y = -I + 2*V; pair Z = -I + 2*W; pair R = isocon(midpoint(A--D)); pair S = isocon(midpoint(B--E)); pair T = isocon(midpoint(C--F)); pair L = 2*H-O; pair P = 0.5/conj(G); pair Q = 0.5/conj(H); pair M = midpoint(P--Q); pair J = K+M-L; draw(A--B--C--cycle); void draw_cevians(pair target) { draw(A--extension(A,target,B,C)); draw(B--extension(B,target,C,A)); draw(C--extension(C,target,A,B)); } draw_cevians(H); draw_cevians(G); draw_cevians(I); draw(unitcircle); draw(circumcircle(D,E,F)); draw(O--P); draw(O--Q); draw(P--Q); draw(CP(X,foot(X,B,C))); draw(CP(Y,foot(Y,C,A))); draw(CP(Z,foot(Z,A,B))); draw(J--K--L--M); draw(X--Y--Z--cycle); draw(A--X); draw(B--Y); draw(C--Z); draw(A--foot(X,A,B)); draw(A--foot(X,A,C)); draw(B--foot(Y,B,C)); draw(B--foot(Y,B,A)); draw(C--foot(Z,C,A)); draw(C--foot(Z,C,B)); pen p = black; dot(A, p); dot(B, p); dot(C, p); dot(D, p); dot(E, p); dot(F, p); dot(G, p); dot(H, p); dot(I, p); dot(J, p); dot(K, p); dot(L, p); dot(M, p); dot(N, p); dot(O, p); dot(P, p); dot(Q, p); dot(R, p); dot(S, p); dot(T, p); dot(U, p); dot(V, p); dot(W, p); dot(X, p); dot(Y, p); dot(Z, p); [/asy]

OMMC POTM, 2023 8

Find all polygons $P$ that can be covered completely by three (possibly overlapping) smaller dilated versions of itself. [i]Proposed by Evan Chang (squareman), USA[/i]

2006 AMC 12/AHSME, 23

Isosceles $ \triangle ABC$ has a right angle at $ C$. Point $ P$ is inside $ \triangle ABC$, such that $ PA \equal{} 11, PB \equal{} 7,$ and $ PC \equal{} 6$. Legs $ \overline{AC}$ and $ \overline{BC}$ have length $ s \equal{} \sqrt {a \plus{} b\sqrt {2}}$, where $ a$ and $ b$ are positive integers. What is $ a \plus{} b$? [asy]pointpen = black; pathpen = linewidth(0.7); pen f = fontsize(10); size(5cm); pair B = (0,sqrt(85+42*sqrt(2))); pair A = (B.y,0); pair C = (0,0); pair P = IP(arc(B,7,180,360),arc(C,6,0,90)); D(A--B--C--cycle); D(P--A); D(P--B); D(P--C); MP("A",D(A),plain.E,f); MP("B",D(B),plain.N,f); MP("C",D(C),plain.SW,f); MP("P",D(P),plain.NE,f);[/asy] $ \textbf{(A) } 85 \qquad \textbf{(B) } 91 \qquad \textbf{(C) } 108 \qquad \textbf{(D) } 121 \qquad \textbf{(E) } 127$

2014 India IMO Training Camp, 1

In a triangle $ABC$, with $AB\neq AC$ and $A\neq 60^{0},120^{0}$, $D$ is a point on line $AC$ different from $C$. Suppose that the circumcentres and orthocentres of triangles $ABC$ and $ABD$ lie on a circle. Prove that $\angle ABD=\angle ACB$.

2009 Korea National Olympiad, 1

Let $I, O$ be the incenter and the circumcenter of triangle $ABC$, and $D,E,F$ be the circumcenters of triangle $ BIC, CIA, AIB$. Let $ P, Q, R$ be the midpoints of segments $ DI, EI, FI $. Prove that the circumcenter of triangle $PQR $, $M$, is the midpoint of segment $IO$.

2010 India IMO Training Camp, 7

Let $ABCD$ be a cyclic quadrilaterla and let $E$ be the point of intersection of its diagonals $AC$ and $BD$. Suppose $AD$ and $BC$ meet in $F$. Let the midpoints of $AB$ and $CD$ be $G$ and $H$ respectively. If $\Gamma $ is the circumcircle of triangle $EGH$, prove that $FE$ is tangent to $\Gamma $.

2012 Sharygin Geometry Olympiad, 19

Two circles with radii 1 meet in points $X, Y$, and the distance between these points also is equal to $1$. Point $C$ lies on the first circle, and lines $CA, CB$ are tangents to the second one. These tangents meet the first circle for the second time in points $B', A'$. Lines $AA'$ and $BB'$ meet in point $Z$. Find angle $XZY$.

2014 Indonesia MO, 3

Let $ABCD$ be a trapezoid (quadrilateral with one pair of parallel sides) such that $AB < CD$. Suppose that $AC$ and $BD$ meet at $E$ and $AD$ and $BC$ meet at $F$. Construct the parallelograms $AEDK$ and $BECL$. Prove that $EF$ passes through the midpoint of the segment $KL$.

2012 AMC 12/AHSME, 17

Square $PQRS$ lies in the first quadrant. Points $(3,0), (5,0), (7,0),$ and $(13,0)$ lie on lines $SP, RQ, PQ$, and $SR$, respectively. What is the sum of the coordinates of the center of the square $PQRS$? $ \textbf{(A)}\ 6\qquad\textbf{(B)}\ 6.2\qquad\textbf{(C)}\ 6.4\qquad\textbf{(D)}\ 6.6\qquad\textbf{(E)}\ 6.8 $

2014 India IMO Training Camp, 1

In a triangle $ABC$, with $AB\neq AC$ and $A\neq 60^{0},120^{0}$, $D$ is a point on line $AC$ different from $C$. Suppose that the circumcentres and orthocentres of triangles $ABC$ and $ABD$ lie on a circle. Prove that $\angle ABD=\angle ACB$.