This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 31

1979 IMO Longlists, 1

Prove that in the Euclidean plane every regular polygon having an even number of sides can be dissected into lozenges. (A lozenge is a quadrilateral whose four sides are all of equal length).

2008 Germany Team Selection Test, 3

A rectangle $ D$ is partitioned in several ($ \ge2$) rectangles with sides parallel to those of $ D$. Given that any line parallel to one of the sides of $ D$, and having common points with the interior of $ D$, also has common interior points with the interior of at least one rectangle of the partition; prove that there is at least one rectangle of the partition having no common points with $ D$'s boundary. [i]Author: Kei Irie, Japan[/i]

2003 Germany Team Selection Test, 3

For $n$ an odd positive integer, the unit squares of an $n\times n$ chessboard are coloured alternately black and white, with the four corners coloured black. A it tromino is an $L$-shape formed by three connected unit squares. For which values of $n$ is it possible to cover all the black squares with non-overlapping trominos? When it is possible, what is the minimum number of trominos needed?

1966 IMO Longlists, 52

A figure with area $1$ is cut out of paper. We divide this figure into $10$ parts and color them in $10$ different colors. Now, we turn around the piece of paper, divide the same figure on the other side of the paper in $10$ parts again (in some different way). Show that we can color these new parts in the same $10$ colors again (hereby, different parts should have different colors) such that the sum of the areas of all parts of the figure colored with the same color on both sides is $\geq \frac{1}{10}.$

1967 IMO Longlists, 10

The square $ABCD$ has to be decomposed into $n$ triangles (which are not overlapping) and which have all angles acute. Find the smallest integer $n$ for which there exist a solution of that problem and for such $n$ construct at least one decomposition. Answer whether it is possible to ask moreover that (at least) one of these triangles has the perimeter less than an arbitrarily given positive number.

1979 IMO Shortlist, 1

Prove that in the Euclidean plane every regular polygon having an even number of sides can be dissected into lozenges. (A lozenge is a quadrilateral whose four sides are all of equal length).

1972 IMO, 2

Given $n>4$, prove that every cyclic quadrilateral can be dissected into $n$ cyclic quadrilaterals.

2010 Germany Team Selection Test, 2

For an integer $m\geq 1$, we consider partitions of a $2^m\times 2^m$ chessboard into rectangles consisting of cells of chessboard, in which each of the $2^m$ cells along one diagonal forms a separate rectangle of side length $1$. Determine the smallest possible sum of rectangle perimeters in such a partition. [i]Proposed by Gerhard Woeginger, Netherlands[/i]

1969 IMO Longlists, 32

$(GDR 4)$ Find the maximal number of regions into which a sphere can be partitioned by $n$ circles.

1990 IMO Longlists, 20

Could the three-dimensional space be expressed as the union of disjoint circumferences?

2003 Germany Team Selection Test, 3

For $n$ an odd positive integer, the unit squares of an $n\times n$ chessboard are coloured alternately black and white, with the four corners coloured black. A it tromino is an $L$-shape formed by three connected unit squares. For which values of $n$ is it possible to cover all the black squares with non-overlapping trominos? When it is possible, what is the minimum number of trominos needed?

2009 IMO Shortlist, 4

For an integer $m\geq 1$, we consider partitions of a $2^m\times 2^m$ chessboard into rectangles consisting of cells of chessboard, in which each of the $2^m$ cells along one diagonal forms a separate rectangle of side length $1$. Determine the smallest possible sum of rectangle perimeters in such a partition. [i]Proposed by Gerhard Woeginger, Netherlands[/i]

1967 IMO Shortlist, 4

The square $ABCD$ has to be decomposed into $n$ triangles (which are not overlapping) and which have all angles acute. Find the smallest integer $n$ for which there exist a solution of that problem and for such $n$ construct at least one decomposition. Answer whether it is possible to ask moreover that (at least) one of these triangles has the perimeter less than an arbitrarily given positive number.

1969 IMO Shortlist, 32

$(GDR 4)$ Find the maximal number of regions into which a sphere can be partitioned by $n$ circles.

1974 IMO, 4

Consider decompositions of an $8\times 8$ chessboard into $p$ non-overlapping rectangles subject to the following conditions: (i) Each rectangle has as many white squares as black squares. (ii) If $a_i$ is the number of white squares in the $i$-th rectangle, then $a_1<a_2<\ldots <a_p$. Find the maximum value of $p$ for which such a decomposition is possible. For this value of $p$, determine all possible sequences $a_1,a_2,\ldots ,a_p$.

2008 Germany Team Selection Test, 3

A rectangle $ D$ is partitioned in several ($ \ge2$) rectangles with sides parallel to those of $ D$. Given that any line parallel to one of the sides of $ D$, and having common points with the interior of $ D$, also has common interior points with the interior of at least one rectangle of the partition; prove that there is at least one rectangle of the partition having no common points with $ D$'s boundary. [i]Author: Kei Irie, Japan[/i]

2010 Germany Team Selection Test, 2

For an integer $m\geq 1$, we consider partitions of a $2^m\times 2^m$ chessboard into rectangles consisting of cells of chessboard, in which each of the $2^m$ cells along one diagonal forms a separate rectangle of side length $1$. Determine the smallest possible sum of rectangle perimeters in such a partition. [i]Proposed by Gerhard Woeginger, Netherlands[/i]

1981 IMO Shortlist, 10

Determine the smallest natural number $n$ having the following property: For every integer $p, p \geq n$, it is possible to subdivide (partition) a given square into $p$ squares (not necessarily equal).

2003 Kazakhstan National Olympiad, 7

For $n$ an odd positive integer, the unit squares of an $n\times n$ chessboard are coloured alternately black and white, with the four corners coloured black. A it tromino is an $L$-shape formed by three connected unit squares. For which values of $n$ is it possible to cover all the black squares with non-overlapping trominos? When it is possible, what is the minimum number of trominos needed?

2002 IMO Shortlist, 2

For $n$ an odd positive integer, the unit squares of an $n\times n$ chessboard are coloured alternately black and white, with the four corners coloured black. A it tromino is an $L$-shape formed by three connected unit squares. For which values of $n$ is it possible to cover all the black squares with non-overlapping trominos? When it is possible, what is the minimum number of trominos needed?

2007 IMO Shortlist, 2

A rectangle $ D$ is partitioned in several ($ \ge2$) rectangles with sides parallel to those of $ D$. Given that any line parallel to one of the sides of $ D$, and having common points with the interior of $ D$, also has common interior points with the interior of at least one rectangle of the partition; prove that there is at least one rectangle of the partition having no common points with $ D$'s boundary. [i]Author: Kei Irie, Japan[/i]

1985 IMO Longlists, 26

Let $K$ and $K'$ be two squares in the same plane, their sides of equal length. Is it possible to decompose $K$ into a finite number of triangles $T_1, T_2, \ldots, T_p$ with mutually disjoint interiors and find translations $t_1, t_2, \ldots, t_p$ such that \[K'=\bigcup_{i=1}^{p} t_i(T_i) \ ? \]

2008 Hungary-Israel Binational, 3

A rectangle $ D$ is partitioned in several ($ \ge2$) rectangles with sides parallel to those of $ D$. Given that any line parallel to one of the sides of $ D$, and having common points with the interior of $ D$, also has common interior points with the interior of at least one rectangle of the partition; prove that there is at least one rectangle of the partition having no common points with $ D$'s boundary. [i]Author: Kei Irie, Japan[/i]

1972 IMO Longlists, 27

Given $n>4$, prove that every cyclic quadrilateral can be dissected into $n$ cyclic quadrilaterals.

1966 IMO Shortlist, 52

A figure with area $1$ is cut out of paper. We divide this figure into $10$ parts and color them in $10$ different colors. Now, we turn around the piece of paper, divide the same figure on the other side of the paper in $10$ parts again (in some different way). Show that we can color these new parts in the same $10$ colors again (hereby, different parts should have different colors) such that the sum of the areas of all parts of the figure colored with the same color on both sides is $\geq \frac{1}{10}.$