Found problems: 180
1985 All Soviet Union Mathematical Olympiad, 417
The $ABCDA_1B_1C_1D_1$ cube has unit length edges. Find the distance between two circumferences, one of those is inscribed into the $ABCD$ base, and another comes through points $A,C$ and $B_1$ .
Novosibirsk Oral Geo Oly VII, 2019.2
Kikoriki live on the shores of a pond in the form of an equilateral triangle with a side of $600$ m, Krash and Wally live on the same shore, $300$ m from each other. In summer, Dokko to Krash walk $900$ m, and Wally to Rosa - also $900$ m. Prove that in winter, when the pond freezes and it will be possible to walk directly on the ice, Dokko will walk as many meters to Krash as Wally to Rosa.
[url=https://en.wikipedia.org/wiki/Kikoriki]about Kikoriki/GoGoRiki / Smeshariki [/url]
2019 Nigerian Senior MO Round 4, 3
An ant is moving on the cooridnate plane, starting form point $(0,-1)$ along a straight line until it reaches the $x$- axis at point $(x,0)$ where $x$ is a real number. After it turns $90^o$ to the left and moves again along a straight line until it reaches the $y$-axis . Then it again turns left and moves along a straight line until it reaches the $x$-axis, where it once more turns left by $90^o$ and moves along a straight line until it finally reached the $y$-axis.
Can both the length of the ant's journey and distance between it's initial and final point be:
(a) rational numbers ?
(b) integers?
Justify your answers
PS. Collected [url=https://artofproblemsolving.com/community/c949609_2019_nigerian_senior_mo_round_4]here[/url]
1991 Czech And Slovak Olympiad IIIA, 4
Prove that in all triangles $ABC$ with $\angle A = 2\angle B$ the distance from $C$ to $A$ and to the perpendicular bisector of $AB$ are in the same ratio.
Estonia Open Senior - geometry, 1995.2.4
Find all points on the plane such that the sum of the distances of each of the four lines defined by the unit square of that plane is $4$.
1984 Tournament Of Towns, (068) T2
A village is constructed in the form of a square, consisting of $9$ blocks , each of side length $\ell$, in a $3 \times 3$ formation . Each block is bounded by a bitumen road . If we commence at a corner of the village, what is the smallest distance we must travel along bitumen roads , if we are to pass along each section of bitumen road at least once and finish at the same corner?
(Muscovite folklore)
1967 Putnam, A5
Show that in a convex region in the plane whose boundary contains at most a finite number of straight line segments and whose area is greater than $\frac{\pi}{4}$ there is at least one pair of points a unit distance apart.
2014 Junior Balkan Team Selection Tests - Romania, 3
Consider six points in the interior of a square of side length $3$.
Prove that among the six points, there are two whose distance is less than $2$.
1998 China Team Selection Test, 2
Let $n$ be a natural number greater than 2. $l$ is a line on a plane. There are $n$ distinct points $P_1$, $P_2$, …, $P_n$ on $l$. Let the product of distances between $P_i$ and the other $n-1$ points be $d_i$ ($i = 1, 2,$ …, $n$). There exists a point $Q$, which does not lie on $l$, on the plane. Let the distance from $Q$ to $P_i$ be $C_i$ ($i = 1, 2,$ …, $n$). Find $S_n = \sum_{i = 1}^{n} (-1)^{n-i} \frac{c_i^2}{d_i}$.
Ukrainian TYM Qualifying - geometry, 2010.3
The following method of approximate measurement is known for distances. Suppose, for example, that the observer is on the river bank at point $C$ in order to measure its width. To do this, he fixes point $A$ on the opposite bank so that the angle between the shoreline and the line $CA$ is close to the line. Then the observer pulls forward the right hand with the raised thumb, closes left eye and aligns the raised finger with point $A$. Next, opens the left eye, closes right and estimates the distance between the point on the opposite bank to which the finger points, and point $A$. Multiply this distance by $10$ and get the approximate value of the distance to point $A$, ie the width of the river. Justify this method of measuring distance.
[hide=original wording]Відомий наступний спосіб наближеного вимірювання відстані. Нехай, наприклад, спостерігач знаходиться на березі річки у точці C і має на меті виміряти її ширину. Для цього він фіксує точку A на протилежному березі так, щоб кут між лінією берега і прямою CA був близьким до прямого. Потім спостерігач витягує вперед праву руку з піднятим вгору великим пальцем, заплющує ліве око і суміщає піднятий палець з точкою A. Далі, відкриває ліве око, заплющує праве і оцінює відстань між точкою на протилежному березі, на яку вказує палець, і точкою A. Цю відстань множить на 10 і отримує наближене значення відстані до точки A, тобто ширини річки. Обґрунтуйте цей спосіб вимірювання відстані.[/hide]
2019 Mediterranean Mathematics Olympiad, 4
Let $P$ be a point in the interior of an equilateral triangle with height $1$, and let $x,y,z$ denote the distances from $P$ to the three sides of the triangle. Prove that
\[ x^2+y^2+z^2 ~\ge~ x^3+y^3+z^3 +6xyz \]
1971 IMO Shortlist, 7
All faces of the tetrahedron $ABCD$ are acute-angled. Take a point $X$ in the interior of the segment $AB$, and similarly $Y$ in $BC, Z$ in $CD$ and $T$ in $AD$.
[b]a.)[/b] If $\angle DAB+\angle BCD\ne\angle CDA+\angle ABC$, then prove none of the closed paths $XYZTX$ has minimal length;
[b]b.)[/b] If $\angle DAB+\angle BCD=\angle CDA+\angle ABC$, then there are infinitely many shortest paths $XYZTX$, each with length $2AC\sin k$, where $2k=\angle BAC+\angle CAD+\angle DAB$.
2002 Moldova Team Selection Test, 4
Let $C$ be the circle with center $O(0,0)$ and radius $1$, and $A(1,0), B(0,1)$ be points on the circle. Distinct points $A_1,A_2, ....,A_{n-1}$ on $C$ divide the smaller arc $AB$ into $n$ equal parts ($n \ge 2$). If $P_i$ is the orthogonal projection of $A_i$ on $OA$ ($i =1, ... ,n-1$), find all values of $n$ such that $P_1A^{2p}_1 +P_2A^{2p}_2 +...+P_{n-1}A^{2p}_{n-1}$ is an integer for every positive integer $p$.
2003 Portugal MO, 4
In a village there are only $10$ houses, arranged in a circle of a radius $r$ meters. Each has is the same distance from each of the two closest houses. Every year on Sunday of Pascoa, the village priest makes the Easter visit, leaving the parish house (point $A$) and following the path described in Figure 1. This year the priest decided to take the path represented in the Figure 2. Prove that this year the priest will walk another $10r$ meters.
[img]https://cdn.artofproblemsolving.com/attachments/a/9/a6315f4a63f28741ca6fbc75c19a421eb1da06.png[/img]
2017 Sharygin Geometry Olympiad, P22
Let $P$ be an arbitrary point on the diagonal $AC$ of cyclic quadrilateral $ABCD$, and $PK, PL, PM, PN, PO$ be the perpendiculars from $P$ to $AB, BC, CD, DA, BD$ respectively. Prove that the distance from $P$ to $KN$ is equal to the distance from $O$ to $ML$.
2018 Morocco TST., 5
Let $n$ be a positive integer. Define a chameleon to be any sequence of $3n$ letters, with exactly $n$ occurrences of each of the letters $a, b,$ and $c$. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon $X$ , there exists a chameleon $Y$ such that $X$ cannot be changed to $Y$ using fewer than $3n^2/2$ swaps.
2007 Postal Coaching, 5
There are $N$ points in the plane such that the [b]total number[/b] of pairwise distances of these $N$ points is at most $n$. Prove that $N \le (n + 1)^2$.
1954 Putnam, A2
Consider any five points in the interior of square $S$ of side length $1$. Prove that at least one of the distances between these points is less than $\sqrt{2} \slash 2.$ Can this constant be replaced by a smaller number?
Russian TST 2018, P1
Let $n$ be a positive integer. Define a chameleon to be any sequence of $3n$ letters, with exactly $n$ occurrences of each of the letters $a, b,$ and $c$. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon $X$ , there exists a chameleon $Y$ such that $X$ cannot be changed to $Y$ using fewer than $3n^2/2$ swaps.
1998 Mexico National Olympiad, 6
A plane in space is equidistant from a set of points if its distances from the points in the set are equal. What is the largest possible number of equidistant planes from five points, no four of which are coplanar?
1999 Mexico National Olympiad, 4
An $8 \times 8$ board is divided into unit squares. Ten of these squares have their centers marked. Prove that either there exist two marked points on the distance at most $\sqrt2$, or there is a point on the distance $1/2$ from the edge of the board.
2000 BAMO, 4
Prove that there exists a set $S$ of $3^{1000}$ points in the plane such that for each point $P$ in $S$, there are at least $2000$ points in $S$ whose distance to $P$ is exactly $1$ inch.
1997 Nordic, 3
Let $A, B, C$, and $D$ be four different points in the plane. Three of the line segments $AB, AC, AD, BC, BD$,
and $CD$ have length $a$. The other three have length $b$, where $b > a$. Determine all possible values of the quotient $\frac{b}{a}$.
.
1999 Cono Sur Olympiad, 5
Give a square of side $1$. Show that for each finite set of points of the sides of the square you can find a vertex of the square with the following property: the arithmetic mean of the squares of the distances from this vertex to the points of the set is greater than or equal to $3/4$.
2010 Czech And Slovak Olympiad III A, 2
A circular target with a radius of $12$ cm was hit by $19$ shots. Prove that the distance between two hits is less than $7$ cm.