Found problems: 137
2005 National High School Mathematics League, 5
Which kind of curve does the equation $\frac{x^2}{\sin\sqrt2-\sin\sqrt3}+\frac{y^2}{\cos\sqrt2-\cos\sqrt3}=1$ refer to?
$\text{(A)}$ An ellipse, whose focal points are on $x$-axis.
$\text{(B)}$ A hyperbola, whose focal points are on $x$-axis.
$\text{(C)}$ An ellipse, whose focal points are on $y$-axis.
$\text{(D)}$ A hyperbola, whose focal points are on $y$-axis.
2022 VTRMC, 2
Let $A$ and $B$ be the two foci of an ellipse and let $P$ be a point on this ellipse. Prove that the focal radii of $P$ (that is, the segments $\overline{AP}$ and $\overline{BP}$ ) form equal angles with the tangent to the ellipse at $P$.
1990 Baltic Way, 9
Two congruent triangles are inscribed in an ellipse. Are they necessarily symmetric with respect to an axis or the center of the ellipse?
2017 Taiwan TST Round 3, 2
Choose a rational point $P_0(x_p,y_p)$ arbitrary on ellipse $C:x^2+2y^2=2098$. Define $P_1,P_2,\cdots$ recursively by the following rules:
$(1)$ Choose a lattice point $Q_i=(x_i,y_i)\notin C$ such that $|x_i|<50$ and $|y_i|<50$.
$(2)$ Line $P_iQ_i$ intersects $C$ at another point $P_{i+1}$.
Prove that for any point $P_0$ we can choose suitable points $Q_0,Q_1,\cdots$ such that $\exists k\in\mathbb{N}\cup\{0\}$, $\overline{OP_k}^2=2017$.
Today's calculation of integrals, 870
Consider the ellipse $E: 3x^2+y^2=3$ and the hyperbola $H: xy=\frac 34.$
(1) Find all points of intersection of $E$ and $H$.
(2) Find the area of the region expressed by the system of inequality
\[\left\{
\begin{array}{ll}
3x^2+y^2\leq 3 &\quad \\
xy\geq \frac 34 , &\quad
\end{array}
\right.\]
2016 ASMT, T3
An ellipse lies in the $xy$-plane and is tangent to both the $x$-axis and $y$-axis. Given that one of the foci is at $(9, 12)$, compute the minimum possible distance between the two foci.
2010 AMC 10, 23
Each of 2010 boxes in a line contains a single red marble, and for $ 1 \le k \le 2010$, the box in the $ kth$ position also contains $ k$ white marbles. Isabella begins at the first box and successively draws a single marble at random from each box, in order. She stops when she first draws a red marble. Let $ P(n)$ be the probability that Isabella stops after drawing exactly $ n$ marbles. What is the smallest value of $ n$ for which $ P(n) < \frac {1}{2010}$?
$ \textbf{(A)}\ 45 \qquad
\textbf{(B)}\ 63 \qquad
\textbf{(C)}\ 64 \qquad
\textbf{(D)}\ 201 \qquad
\textbf{(E)}\ 1005$
2007 Moldova National Olympiad, 12.6
Show that the distance between a point on the hyperbola $xy=5$ and a point on the ellipse $x^{2}+6y^{2}=6$ is at least $\frac{9}{7}$.
2013 Chile National Olympiad, 5
A conical surface $C$ is cut by a plane $T$ as shown in the figure on the back of this sheet. Show that $C \cap T$ is an ellipse. You can use as an aid the fact that if you consider the two spheres tangent to $C$ and $T$ as shown in the figure, they intersect $T$ in the bulbs.
[asy]
// calculate intersection of line and plane
// p = point on line
// d = direction of line
// q = point in plane
// n = normal to plane
triple lineintersectplan(triple p, triple d, triple q, triple n)
{
return (p + dot(n,q - p)/dot(n,d)*d);
}
// projection of point A onto line BC
triple projectionofpointontoline(triple A, triple B, triple C)
{
return lineintersectplan(B, B - C, A, B - C);
}
// calculate area of space triangle with vertices A, B, and C
real trianglearea(triple A, triple B, triple C)
{
return abs(cross(A - C, B - C)/2);
}
// calculate incentre of space triangle ABC
triple triangleincentre(triple A, triple B, triple C)
{
return (abs(B - C) * A + abs(C - A) * B + abs(A - B) * C)/(abs(B - C) + abs(C - A) + abs(A - B));
}
// calculate inradius of space triangle ABC
real triangleinradius(triple A, triple B, triple C)
{
return 2*trianglearea(A,B,C)/(abs(B - C) + abs(C - A) + abs(A - B));
}
// calculate excentre of space triangle ABC
triple triangleexcentre(triple A, triple B, triple C)
{
return (-abs(B - C) * A + abs(C - A) * B + abs(A - B) * C)/(-abs(B - C) + abs(C - A) + abs(A - B));
}
// calculate exradius of space triangle ABC
real triangleexradius(triple A, triple B, triple C)
{
return 2*trianglearea(A,B,C)/(-abs(B - C) + abs(C - A) + abs(A - B));
}
unitsize(2 cm);
pair project (triple A, real t) {
return((A.x, A.y*Sin(t) + A.z*Cos(t)));
}
real alpha, beta, theta, t;
real coneradius = 1, coneheight = 3;
real a, b, c;
real[] m, r;
triple A, B, V;
triple ellipsecenter, ellipsex, ellipsey;
triple[] F, O, P, R, W;
path[] ellipse, spherering;
theta = 15;
V = (0,0,-coneheight);
m[1] = sqrt(Cos(theta)^2*coneheight^2 - Sin(theta)^2*coneradius^2)/coneradius;
m[2] = -m[1];
alpha = -aTan(Sin(theta)/m[1]);
beta = -aTan(Sin(theta)/m[2]) + 180;
A = (coneradius*Cos(alpha), coneradius*Sin(alpha), 0);
B = (coneradius*Cos(beta), coneradius*Sin(beta), 0);
W[1] = interp(V,(coneradius,0,0),0.6);
W[2] = interp(V,(-coneradius,0,0),0.4);
O[1] = triangleexcentre(V,W[1],W[2]);
O[2] = triangleincentre(V,W[1],W[2]);
r[1] = triangleexradius(V,W[1],W[2]);
r[2] = triangleinradius(V,W[1],W[2]);
F[1] = projectionofpointontoline(O[1],W[1],W[2]);
F[2] = projectionofpointontoline(O[2],W[1],W[2]);
P[1] = O[1] - (0,0,r[1]*coneradius/sqrt(coneradius^2 + coneheight^2));
P[2] = O[2] - (0,0,r[2]*coneradius/sqrt(coneradius^2 + coneheight^2));
spherering[11] = shift(project(P[1],theta))*yscale(Sin(theta))*arc((0,0),r[1]*coneheight/sqrt(coneradius^2 + coneheight^2),alpha,beta);
spherering[12] = shift(project(P[1],theta))*yscale(Sin(theta))*arc((0,0),r[1]*coneheight/sqrt(coneradius^2 + coneheight^2),beta,alpha + 360);
spherering[21] = shift(project(P[2],theta))*yscale(Sin(theta))*arc((0,0),r[2]*coneheight/sqrt(coneradius^2 + coneheight^2),alpha,beta);
spherering[22] = shift(project(P[2],theta))*yscale(Sin(theta))*arc((0,0),r[2]*coneheight/sqrt(coneradius^2 + coneheight^2),beta,alpha + 360);
ellipsecenter = (W[1] + W[2])/2;
a = abs(W[1] - ellipsecenter);
c = abs(F[1] - ellipsecenter);
b = sqrt(a^2 - c^2);
ellipsex = (W[1] - W[2])/abs(W[1] - W[2]);
ellipsey = (0,1,0);
ellipse[1] = project(ellipsecenter + a*ellipsex, theta);
for (t = 0; t <= 180; t = t + 5) {
ellipse[1] = ellipse[1]--project(ellipsecenter + a*Cos(t)*ellipsex + b*Sin(t)*ellipsey, theta);
}
ellipse[2] = project(ellipsecenter - a*ellipsex, theta);
for (t = 180; t <= 360; t = t + 5) {
ellipse[2] = ellipse[2]--project(ellipsecenter + a*Cos(t)*ellipsex + b*Sin(t)*ellipsey, theta);
}
R[1] = ellipsecenter + 1*ellipsex + ellipsey;
R[2] = ellipsecenter - 1.2*ellipsex + ellipsey;
R[3] = ellipsecenter - 1*ellipsex - ellipsey;
R[4] = ellipsecenter + 1.2*ellipsex - ellipsey;
fill(ellipse[1]--ellipse[2]--cycle, gray(0.9));
draw(yscale(Sin(theta))*Circle((0,0),coneradius));
draw(project(V,theta)--project(A,theta));
draw(project(V,theta)--project(B,theta));
draw(Circle(project(O[1],theta),r[1]));
draw(Circle(project(O[2],theta),r[2]));
draw(spherering[11], dashed);
draw(spherering[12]);
draw(spherering[21], dashed);
draw(spherering[22]);
draw(ellipse[1], dashed);
draw(ellipse[2]);
draw(project(R[1],theta)--interp(project(R[1],theta),project(R[2],theta),0.13));
draw(interp(project(R[1],theta),project(R[2],theta),0.13)--interp(project(R[1],theta),project(R[2],theta),0.76), dashed);
draw(interp(project(R[1],theta),project(R[2],theta),0.76)--project(R[2],theta));
draw(project(R[2],theta)--project(R[3],theta)--project(R[4],theta)--project(R[1],theta));
label("$C$", (-1,0.3));
label("$T$", (1.2,-0.8));
dot(project(F[1],theta));
dot(project(F[2],theta));
//dot("$F_1$", project(F[1],theta));
//dot("$F_2$", project(F[2],theta));
//dot("$O_1$", project(O[1],theta));
//dot("$O_2$", project(O[2],theta));
//dot("$P_1$", project(P[1],theta));
//dot("$V$", project(V,theta));
//dot("$W_1$", project(W[1],theta));
//dot("$W_2$", project(W[2],theta));
[/asy]
2003 Federal Math Competition of S&M, Problem 4
Let $ n$ be an even number, and $ S$ be the set of all arrays of length $ n$ whose elements are from the set $ \left\{0,1\right\}$. Prove that $ S$ can be partitioned into disjoint three-element subsets such that for each three arrays $ \left(a_i\right)_{i \equal{} 1}^n$, $ \left(b_i\right)_{i \equal{} 1}^n$, $ \left(c_i\right)_{i \equal{} 1}^n$ which belong to the same subset and for each $ i\in\left\{1,2,...,n\right\}$, the number $ a_i \plus{} b_i \plus{} c_i$ is divisible by $ 2$.
2007 Princeton University Math Competition, 8
What is the area of the region defined by $x^2+3y^2 \le 4$ and $y^2+3x^2 \le 4$?
1990 IMO Shortlist, 10
A plane cuts a right circular cone of volume $ V$ into two parts. The plane is tangent to the circumference of the base of the cone and passes through the midpoint of the altitude. Find the volume of the smaller part.
[i]Original formulation:[/i]
A plane cuts a right circular cone into two parts. The plane is tangent to the circumference of the base of the cone and passes through the midpoint of the altitude. Find the ratio of the volume of the smaller part to the volume of the whole cone.
1996 VJIMC, Problem 1
On the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ find the point $T=(x_0,y_0)$ such that the triangle bounded by the axes of the ellipse and the tangent at that point has the least area.
1990 IMO Longlists, 27
A plane cuts a right circular cone of volume $ V$ into two parts. The plane is tangent to the circumference of the base of the cone and passes through the midpoint of the altitude. Find the volume of the smaller part.
[i]Original formulation:[/i]
A plane cuts a right circular cone into two parts. The plane is tangent to the circumference of the base of the cone and passes through the midpoint of the altitude. Find the ratio of the volume of the smaller part to the volume of the whole cone.
2015 AMC 12/AHSME, 21
A circle of radius $r$ passes through both foci of, and exactly four points on, the ellipse with equation $x^2+16y^2=16$. The set of all possible values of $r$ is an interval $[a,b)$. What is $a+b$?
$\textbf{(A) }5\sqrt2+4\qquad\textbf{(B) }\sqrt{17}+7\qquad\textbf{(C) }6\sqrt2+3\qquad\textbf{(D) }\sqrt{15}+8\qquad\textbf{(E) }12$
2010 Kazakhstan National Olympiad, 1
Triangle $ABC$ is given. Consider ellipse $ \Omega _1$, passes through $C$ with focuses in $A$ and $B$. Similarly define ellipses $ \Omega _2 , \Omega _3$ with focuses $B,C$ and $C,A$ respectively. Prove, that if all ellipses have common point $D$ then $A,B,C,D$ lies on the circle.
Ellipse with focuses $X,Y$, passes through $Z$- locus of point $T$, such that $XT+YT=XZ+YZ$
1966 AMC 12/AHSME, 17
The number of distinct points common to the curves $x^2+4y^2=1$ and $4x^2+y^2=5$ is:
$\text{(A)} \ 0 \qquad \text{(B)} \ 1 \qquad \text{(C)} \ 2 \qquad \text{(D)} \ 3 \qquad \text{(E)} \ 4$
1990 National High School Mathematics League, 6
An ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ passes point $(2,1)$, then all points $(x,y)$ on the ellipse that $|y|>1$ are (shown as shadow)
[img]https://graph.baidu.com/resource/122481219e60931bb707101582696834.jpg[/img]
2006 AMC 12/AHSME, 21
Rectangle $ ABCD$ has area 2006. An ellipse with area $ 2006\pi$ passes through $ A$ and $ C$ and has foci at $ B$ and $ D$. What is the perimeter of the rectangle? (The area of an ellipse is $ \pi ab$, where $ 2a$ and $ 2b$ are the lengths of its axes.)
$ \textbf{(A) } \frac {16\sqrt {2006}}{\pi} \qquad \textbf{(B) } \frac {1003}4 \qquad \textbf{(C) } 8\sqrt {1003} \qquad \textbf{(D) } 6\sqrt {2006} \qquad \textbf{(E) } \frac {32\sqrt {1003}}\pi$
2002 National High School Mathematics League, 4
Line $\frac{x}{4}+\frac{y}{3}=1$ and ellipse $\frac{x^2}{16}+\frac{y^2}{9}=1$ intersect at $A$ and $B$. A point on the ellipse $P$ satisties that the area of $\triangle PAB$ is $3$. The number of such points is
$\text{(A)}1\qquad\text{(B)}2\qquad\text{(C)}3\qquad\text{(D)}4$
1998 USAMTS Problems, 5
The figure on the right shows the ellipse $\frac{(x-19)^2}{19}+\frac{(x-98)^2}{98}=1998$.
Let $R_1,R_2,R_3,$ and $R_4$ denote those areas within the ellipse that are in the first, second, third, and fourth quadrants, respectively. Determine the value of $R_1-R_2+R_3-R_4$.
[asy]
defaultpen(linewidth(0.7));
pair c=(19,98);
real dist = 30;
real a = sqrt(1998*19),b=sqrt(1998*98);
xaxis("x",c.x-a-dist,c.x+a+3*dist,EndArrow);
yaxis("y",c.y-b-dist*2,c.y+b+3*dist,EndArrow);
draw(ellipse(c,a,b));
label("$R_1$",(100,200));
label("$R_2$",(-80,200));
label("$R_3$",(-60,-150));
label("$R_4$",(70,-150));[/asy]
2014 District Olympiad, 1
Solve for $z\in \mathbb{C}$ the equation :
\[ |z-|z+1||=|z+|z-1|| \]
2011 Today's Calculation Of Integral, 769
In $xyz$ space, find the volume of the solid expressed by $x^2+y^2\leq z\le \sqrt{3}y+1.$
2008 ITest, 63
Looking for a little time alone, Michael takes a jog at along the beach. The crashing of waves reminds him of the hydroelectric plant his father helped maintain before the family moved to Jupiter Falls. Michael was in elementary school at the time. He thinks about whether he wants to study engineering in college, like both his parents did, or pursue an education in business. His aunt Jessica studied business and appraises budding technology companies for a venture capital firm. Other possibilities also tug a little at Michael for different reasons.
Michael stops and watches a group of girls who seem to be around Tony's age play a game around an ellipse drawn in the sand. There are two softball bats stuck in the sand. Michael recognizes these as the foci of the ellipse. The bats are $24$ feet apart. Two children stand on opposite ends of the ellipse where the ellipse intersects the line on which the bats lie. These two children are $40$ feet apart. Five other children stand on different points of the ellipse. One of them blows a whistle and all seven children run screaming toward one bat or the other. Each child runs as fast as she can, touching one bat, then the next, and finally returning to the spot on which she started. When the first girl gets back to her place, she declares, "I win this time! I win!" Another of the girls pats her on the back, and the winning girl speaks again. "This time I found the place where I'd have to run the shortest distance."
Michael thinks for a moment, draws some notes in the sand, then computes the shortest possible distance one of the girls could run from her starting point on the ellipse, to one of the bats, to the other bat, then back to her starting point. He smiles for a moment, then keeps jogging. If Michael's work is correct, what distance did he compute as the shortest possible distance one of the girls could run during the game?
2013 Waseda University Entrance Examination, 1
Given a parabola $C: y^2=4px\ (p>0)$ with focus $F(p,\ 0)$. Let two lines $l_1,\ l_2$ passing through $F$ intersect orthogonaly each other,
$C$ intersects with $l_1$ at two points $P_1,\ P_2$ and $C$ intersects with $l_2$ at two points $Q_1,\ Q_2$. Answer the following questions.
(1) Set the equation of $l_1$ as $x=ay+p$ and let the coordinates of $P_1,\ P_2$ as $(x_1,\ y_1),\ (x_2,\ y_2)$, respectively. Express $y_1+y_2,\ y_1y_2$ in terms of $a,\ p$.
(2) Show that $\frac{1}{P_1P_2}+\frac{1}{Q_1Q_2}$ is constant regardless of way of taking $l_1,\ l_2$.