This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 230

2004 Romania Team Selection Test, 15

Some of the $n$ faces of a polyhedron are colored in black such that any two black-colored faces have no common vertex. The rest of the faces of the polyhedron are colored in white. Prove that the number of common sides of two white-colored faces of the polyhedron is at least $n-2$.

2006 MOP Homework, 4

Let $ABC$ be a triangle with circumcenter $O$. Let $A_1$ be the midpoint of side $BC$. Ray $AA_1$ meet the circumcircle of triangle $ABC$ again at $A_2$ (other than A). Let $Q_a$ be the foot of the perpendicular from $A_1$ to line $AO$. Point $P_a$ lies on line $Q_aA_1$ such that $P_aA_2 \perp A_2O$. Define points $P_b$ and $P_c$ analogously. Prove that points $P_a$, P_b$, and $P_c$ lie on a line.

2013 NIMO Problems, 8

For a finite set $X$ define \[ S(X) = \sum_{x \in X} x \text{ and } P(x) = \prod_{x \in X} x. \] Let $A$ and $B$ be two finite sets of positive integers such that $\left\lvert A \right\rvert = \left\lvert B \right\rvert$, $P(A) = P(B)$ and $S(A) \neq S(B)$. Suppose for any $n \in A \cup B$ and prime $p$ dividing $n$, we have $p^{36} \mid n$ and $p^{37} \nmid n$. Prove that \[ \left\lvert S(A) - S(B) \right\rvert > 1.9 \cdot 10^{6}. \][i]Proposed by Evan Chen[/i]

2008 All-Russian Olympiad, 3

In a scalene triangle $ ABC, H$ and $ M$ are the orthocenter an centroid respectively. Consider the triangle formed by the lines through $ A,B$ and $ C$ perpendicular to $ AM,BM$ and $ CM$ respectively. Prove that the centroid of this triangle lies on the line $ MH$.

2005 India IMO Training Camp, 1

Let $ABC$ be a triangle with all angles $\leq 120^{\circ}$. Let $F$ be the Fermat point of triangle $ABC$, that is, the interior point of $ABC$ such that $\angle AFB = \angle BFC = \angle CFA = 120^\circ$. For each one of the three triangles $BFC$, $CFA$ and $AFB$, draw its Euler line - that is, the line connecting its circumcenter and its centroid. Prove that these three Euler lines pass through one common point. [i]Remark.[/i] The Fermat point $F$ is also known as the [b]first Fermat point[/b] or the [b]first Toricelli point[/b] of triangle $ABC$. [i]Floor van Lamoen[/i]

2006 Team Selection Test For CSMO, 2

Let $AA_1$ and $BB_1$ be the altitudes of an acute-angled, non-isosceles triangle $ABC$. Also, let $A_0$ and $B_0$ be the midpoints of its sides $BC$ and $CA$, respectively. The line $A_1B_1$ intersects the line $A_0B_0$ at a point $C'$. Prove that the line $CC'$ is perpendicular to the Euler line of the triangle $ABC$ (this is the line that joins the orthocenter and the circumcenter of the triangle $ABC$).

2017 Thailand TSTST, 2

Suppose that for some $m,n\in\mathbb{N}$ we have $\varphi (5^m-1)=5^n-1$, where $\varphi$ denotes the Euler function. Show that $(m,n)>1$.

2000 239 Open Mathematical Olympiad, 7

The perpendicular bisectors of the sides AB and BC of a triangle ABC meet the lines BC and AB at the points X and Z, respectively. The angle bisectors of the angles XAC and ZCA intersect at a point B'. Similarly, define two points C' and A'. Prove that the points A', B', C' lie on one line through the incenter I of triangle ABC. [i]Extension:[/i] Prove that the points A', B', C' lie on the line OI, where O is the circumcenter and I is the incenter of triangle ABC. Darij

2007 China Team Selection Test, 2

Let $ ABCD$ be the inscribed quadrilateral with the circumcircle $ \omega$.Let $ \zeta$ be another circle that internally tangent to $ \omega$ and to the lines $ BC$ and $ AD$ at points $ M,N$ respectively.Let $ I_1,I_2$ be the incenters of the $ \triangle ABC$ and $ \triangle ABD$.Prove that $ M,I_1,I_2,N$ are collinear.

2024 Euler Olympiad, Round 2, 1

Find all triples $(a, b,c) $ of positive integers, such that: \[ a! + b! = c!! \] where $(2k)!! = 2 \cdot 4 \cdot \ldots \cdot (2k)$ and $ (2k + 1)!! = 1 \cdot 3 \cdot \ldots \cdot (2k+1).$ [i]Proposed by Stijn Cambie, Belgium [/i]

2012 Online Math Open Problems, 30

Let $P(x)$ denote the polynomial \[3\sum_{k=0}^{9}x^k + 2\sum_{k=10}^{1209}x^k + \sum_{k=1210}^{146409}x^k.\]Find the smallest positive integer $n$ for which there exist polynomials $f,g$ with integer coefficients satisfying $x^n - 1 = (x^{16} + 1)P(x) f(x) + 11\cdot g(x)$. [i]Victor Wang.[/i]

2025 Kyiv City MO Round 2, Problem 3

Tags: euler , geometry
On sides \( AB \) and \( AC \) of an acute-angled, non-isosceles triangle \( ABC \), points \( P \) and \( Q \) are chosen such that the center \( O_9 \) of the nine-point circle of \( \triangle ABC \) is the midpoint of segment \( PQ \). Let \( O \) be the circumcenter of \( \triangle ABC \). On the ray \( OP \) beyond \( P \), segment \( PX \) is marked such that \( PX = AQ \). On the ray \( OQ \) beyond \( Q \), segment \( QY \) is marked such that \( QY = AP \). Prove that the midpoint of side \( BC \), the midpoint of segment \( XY \), and the point \( O_9 \) are collinear. [i]The nine-point circle or the Euler circle[/i] of \( \triangle ABC \) is the circle passing through nine significant points of the triangle — the midpoints of the three sides, the feet of the three altitudes, and the midpoints of the segments connecting the orthocenter with the vertices of \( \triangle ABC \). [i]Proposed by Danylo Khilko[/i]

2016 China Northern MO, 3

$m(m>1)$ is an intenger, define $(a_n)$: $a_0=m,a_{n}=\varphi(a_{n-1})$ for all positive intenger $n$. If for all nonnegative intenger $k$, $a_{k+1}\mid a_k$, find all $m$ that is not larger than $2016$. Note: $\varphi(n)$ means Euler Function.

1996 All-Russian Olympiad, 5

Show that in the arithmetic progression with first term 1 and ratio 729, there are infinitely many powers of 10. [i]L. Kuptsov[/i]

2000 IMO Shortlist, 1

Determine all positive integers $ n\geq 2$ that satisfy the following condition: for all $ a$ and $ b$ relatively prime to $ n$ we have \[a \equiv b \pmod n\qquad\text{if and only if}\qquad ab\equiv 1 \pmod n.\]

1991 IMO Shortlist, 10

Suppose $ \,G\,$ is a connected graph with $ \,k\,$ edges. Prove that it is possible to label the edges $ 1,2,\ldots ,k\,$ in such a way that at each vertex which belongs to two or more edges, the greatest common divisor of the integers labeling those edges is equal to 1. [b]Note: Graph-Definition[/b]. A [b]graph[/b] consists of a set of points, called vertices, together with a set of edges joining certain pairs of distinct vertices. Each pair of vertices $ \,u,v\,$ belongs to at most one edge. The graph $ G$ is connected if for each pair of distinct vertices $ \,x,y\,$ there is some sequence of vertices $ \,x \equal{} v_{0},v_{1},v_{2},\cdots ,v_{m} \equal{} y\,$ such that each pair $ \,v_{i},v_{i \plus{} 1}\;(0\leq i < m)\,$ is joined by an edge of $ \,G$.

2023 UMD Math Competition Part I, #4

Tags: euler , algebra
Euler is selling Mathematician cards to Gauss. Three Fermat cards plus $5$ Newton cards costs $95$ Euros, while $5$ Fermat cards plus $2$ Newton cards also costs $95$ Euros. How many Euroes does one Fermat card cost? $$ \mathrm a. ~ 10\qquad \mathrm b.~15\qquad \mathrm c. ~20 \qquad \mathrm d. ~30 \qquad \mathrm e. ~35 $$

PEN D Problems, 6

Show that, for any fixed integer $\,n \geq 1,\,$ the sequence \[2, \; 2^{2}, \; 2^{2^{2}}, \; 2^{2^{2^{2}}}, \cdots \pmod{n}\] is eventually constant.

1994 APMO, 2

Given a nondegenerate triangle $ABC$, with circumcentre $O$, orthocentre $H$, and circumradius $R$, prove that $|OH| < 3R$.

2004 APMO, 2

Let $O$ be the circumcenter and $H$ the orthocenter of an acute triangle $ABC$. Prove that the area of one of the triangles $AOH$, $BOH$ and $COH$ is equal to the sum of the areas of the other two.

2009 Romania Team Selection Test, 2

Prove that the circumcircle of a triangle contains exactly 3 points whose Simson lines are tangent to the triangle's Euler circle and these points are the vertices of an equilateral triangle.

2013 China Team Selection Test, 2

Let $P$ be a given point inside the triangle $ABC$. Suppose $L,M,N$ are the midpoints of $BC, CA, AB$ respectively and \[PL: PM: PN= BC: CA: AB.\] The extensions of $AP, BP, CP$ meet the circumcircle of $ABC$ at $D,E,F$ respectively. Prove that the circumcentres of $APF, APE, BPF, BPD, CPD, CPE$ are concyclic.

2009 Vietnam National Olympiad, 3

Let $ A$, $ B$ be two fixed points and $ C$ is a variable point on the plane such that $ \angle ACB\equal{}\alpha$ (constant) ($ 0^{\circ}\le \alpha\le 180^{\circ}$). Let $ D$, $ E$, $ F$ be the projections of the incenter $ I$ of triangle $ ABC$ to its sides $ BC$, $ CA$, $ AB$, respectively. Denoted by $ M$, $ N$ the intersections of $ AI$, $ BI$ with $ EF$, respectively. Prove that the length of the segment $ MN$ is constant and the circumcircle of triangle $ DMN$ always passes through a fixed point.

2013 Romania Team Selection Test, 2

The vertices of two acute-angled triangles lie on the same circle. The Euler circle (nine-point circle) of one of the triangles passes through the midpoints of two sides of the other triangle. Prove that the triangles have the same Euler circle. EDIT by pohoatza (in concordance with Luis' PS): [hide=Alternate/initial version ]Let $ABC$ be a triangle with circumcenter $\Gamma$ and nine-point center $\gamma$. Let $X$ be a point on $\Gamma$ and let $Y$, $Z$ be on $\Gamma$ so that the midpoints of segments $XY$ and $XZ$ are on $\gamma$. Prove that the midpoint of $YZ$ is on $\gamma$.[/hide]

2014 Korea - Final Round, 5

Let $p>5$ be a prime. Suppose that there exist integer $k$ such that $ k^2 + 5 $ is divisible by $p$. Prove that there exist two positive integers $m,n$ satisfying $ p^2 = m^2 + 5n^2 $.