This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 230

2019 China Western Mathematical Olympiad, 2

Let $O,H$ be the circumcenter and orthocenter of acute triangle $ABC$ with $AB\neq AC$, respectively. Let $M$ be the midpoint of $BC$ and $K$ be the intersection of $AM$ and the circumcircle of $\triangle BHC$, such that $M$ lies between $A$ and $K$. Let $N$ be the intersection of $HK$ and $BC$. Show that if $\angle BAM=\angle CAN$, then $AN\perp OH$.

2007 India IMO Training Camp, 1

Show that in a non-equilateral triangle, the following statements are equivalent: $(a)$ The angles of the triangle are in arithmetic progression. $(b)$ The common tangent to the Nine-point circle and the Incircle is parallel to the Euler Line.

2014 Contests, 3

For even positive integer $n$ we put all numbers $1,2,...,n^2$ into the squares of an $n\times n$ chessboard (each number appears once and only once). Let $S_1$ be the sum of the numbers put in the black squares and $S_2$ be the sum of the numbers put in the white squares. Find all $n$ such that we can achieve $\frac{S_1}{S_2}=\frac{39}{64}.$

2014 NIMO Problems, 4

Let $n$ be largest number such that \[ \frac{2014^{100!}-2011^{100!}}{3^n} \] is still an integer. Compute the remainder when $3^n$ is divided by $1000$.

2004 China Western Mathematical Olympiad, 4

Let $\mathbb{N}$ be the set of positive integers. Let $n\in \mathbb{N}$ and let $d(n)$ be the number of divisors of $n$. Let $\varphi(n)$ be the Euler-totient function (the number of co-prime positive integers with $n$, smaller than $n$). Find all non-negative integers $c$ such that there exists $n\in\mathbb{N}$ such that \[ d(n) + \varphi(n) = n+c , \] and for such $c$ find all values of $n$ satisfying the above relationship.

2011 Romania Team Selection Test, 2

In triangle $ABC$, the incircle touches sides $BC,CA$ and $AB$ in $D,E$ and $F$ respectively. Let $X$ be the feet of the altitude of the vertex $D$ on side $EF$ of triangle $DEF$. Prove that $AX,BY$ and $CZ$ are concurrent on the Euler line of the triangle $DEF$.

2013 Junior Balkan MO, 2

Let $ABC$ be an acute-angled triangle with $AB<AC$ and let $O$ be the centre of its circumcircle $\omega$. Let $D$ be a point on the line segment $BC$ such that $\angle BAD = \angle CAO$. Let $E$ be the second point of intersection of $\omega$ and the line $AD$. If $M$, $N$ and $P$ are the midpoints of the line segments $BE$, $OD$ and $AC$, respectively, show that the points $M$, $N$ and $P$ are collinear.

1970 IMO Longlists, 21

In the triangle $ABC$ let $B'$ and $C'$ be the midpoints of the sides $AC$ and $AB$ respectively and $H$ the foot of the altitude passing through the vertex $A$. Prove that the circumcircles of the triangles $AB'C'$,$BC'H$, and $B'CH$ have a common point $I$ and that the line $HI$ passes through the midpoint of the segment $B'C'.$

PEN O Problems, 3

Prove that the set of integers of the form $2^{k}-3$ ($k=2,3,\cdots$) contains an infinite subset in which every two members are relatively prime.

2005 China Team Selection Test, 2

In acute angled triangle $ABC$, $BC=a$,$CA=b$,$AB=c$, and $a>b>c$. $I,O,H$ are the incentre, circumcentre and orthocentre of $\triangle{ABC}$ respectively. Point $D \in BC$, $E \in CA$ and $AE=BD$, $CD+CE=AB$. Let the intersectionf of $BE$ and $AD$ be $K$. Prove that $KH \parallel IO$ and $KH = 2IO$.

2023 Sharygin Geometry Olympiad, 10.2

Tags: geometry , euler
The Euler line of a scalene triangle touches its incircle. Prove that this triangle is obtuse-angled.

2006 International Zhautykov Olympiad, 3

Let $ ABCDEF$ be a convex hexagon such that $ AD \equal{} BC \plus{} EF$, $ BE \equal{} AF \plus{} CD$, $ CF \equal{} DE \plus{} AB$. Prove that: \[ \frac {AB}{DE} \equal{} \frac {CD}{AF} \equal{} \frac {EF}{BC}. \]

2011 International Zhautykov Olympiad, 2

Let $n$ be integer, $n>1.$ An element of the set $M=\{ 1,2,3,\ldots,n^2-1\}$ is called [i]good[/i] if there exists some element $b$ of $M$ such that $ab-b$ is divisible by $n^2.$ Furthermore, an element $a$ is called [i]very good[/i] if $a^2-a$ is divisible by $n^2.$ Let $g$ denote the number of [i]good[/i] elements in $M$ and $v$ denote the number of [i]very good[/i] elements in $M.$ Prove that \[v^2+v \leq g \leq n^2-n.\]

2008 Vietnam Team Selection Test, 2

Let $ k$ be a positive real number. Triangle ABC is acute and not isosceles, O is its circumcenter and AD,BE,CF are the internal bisectors. On the rays AD,BE,CF, respectively, let points L,M,N such that $ \frac {AL}{AD} \equal{} \frac {BM}{BE} \equal{} \frac {CN}{CF} \equal{} k$. Denote $ (O_1),(O_2),(O_3)$ be respectively the circle through L and touches OA at A, the circle through M and touches OB at B, the circle through N and touches OC at C. 1) Prove that when $ k \equal{} \frac{1}{2}$, three circles $ (O_1),(O_2),(O_3)$ have exactly two common points, the centroid G of triangle ABC lies on that common chord of these circles. 2) Find all values of k such that three circles $ (O_1),(O_2),(O_3)$ have exactly two common points

2009 BMO TST, 3

For the give functions in $\mathbb{N}$: [b](a)[/b] Euler's $\phi$ function ($\phi(n)$- the number of natural numbers smaller than $n$ and coprime with $n$); [b](b)[/b] the $\sigma$ function such that the $\sigma(n)$ is the sum of natural divisors of $n$. solve the equation $\phi(\sigma(2^x))=2^x$.

2010 Mediterranean Mathematics Olympiad, 3

Let $A'\in(BC),$ $B'\in(CA),C'\in(AB)$ be the points of tangency of the excribed circles of triangle $\triangle ABC$ with the sides of $\triangle ABC.$ Let $R'$ be the circumradius of triangle $\triangle A'B'C'.$ Show that \[ R'=\frac{1}{2r}\sqrt{2R\left(2R-h_{a}\right)\left(2R-h_{b}\right)\left(2R-h_{c}\right)}\] where as usual, $R$ is the circumradius of $\triangle ABC,$ r is the inradius of $\triangle ABC,$ and $h_{a},h_{b},h_{c}$ are the lengths of altitudes of $\triangle ABC.$

2013 China Team Selection Test, 2

Let $P$ be a given point inside the triangle $ABC$. Suppose $L,M,N$ are the midpoints of $BC, CA, AB$ respectively and \[PL: PM: PN= BC: CA: AB.\] The extensions of $AP, BP, CP$ meet the circumcircle of $ABC$ at $D,E,F$ respectively. Prove that the circumcentres of $APF, APE, BPF, BPD, CPD, CPE$ are concyclic.

1998 All-Russian Olympiad, 4

A connected graph has $1998$ points and each point has degree $3$. If $200$ points, no two of them joined by an edge, are deleted, show that the result is a connected graph.

2006 IMO Shortlist, 7

Consider a convex polyhedron without parallel edges and without an edge parallel to any face other than the two faces adjacent to it. Call a pair of points of the polyhedron [i]antipodal[/i] if there exist two parallel planes passing through these points and such that the polyhedron is contained between these planes. Let $A$ be the number of antipodal pairs of vertices, and let $B$ be the number of antipodal pairs of midpoint edges. Determine the difference $A-B$ in terms of the numbers of vertices, edges, and faces. [i]Proposed by Kei Irei, Japan[/i]

2023 Germany Team Selection Test, 3

Two triangles $ABC, A’B’C’$ have the same orthocenter $H$ and the same circumcircle with center $O$. Letting $PQR$ be the triangle formed by $AA’, BB’, CC’$, prove that the circumcenter of $PQR$ lies on $OH$.

2024 Euler Olympiad, Round 1, 10

Tags: algebra , equation , euler
Find all $x$ that satisfy the following equation: \[ \sqrt {1 + \frac {20}x } = \sqrt {1 + 24x} + 2 \] [i]Proposed by Andria Gvaramia, Georgia [/i]

2010 Sharygin Geometry Olympiad, 2

Bisectors $AA_1$ and $BB_1$ of a right triangle $ABC \ (\angle C=90^\circ )$ meet at a point $I.$ Let $O$ be the circumcenter of triangle $CA_1B_1.$ Prove that $OI \perp AB.$

2010 India National Olympiad, 5

Let $ ABC$ be an acute-angled triangle with altitude $ AK$. Let $ H$ be its ortho-centre and $ O$ be its circum-centre. Suppose $ KOH$ is an acute-angled triangle and $ P$ its circum-centre. Let $ Q$ be the reflection of $ P$ in the line $ HO$. Show that $ Q$ lies on the line joining the mid-points of $ AB$ and $ AC$.

2009 All-Russian Olympiad, 6

Given a finite tree $ T$ and isomorphism $ f: T\rightarrow T$. Prove that either there exist a vertex $ a$ such that $ f(a)\equal{}a$ or there exist two neighbor vertices $ a$, $ b$ such that $ f(a)\equal{}b$, $ f(b)\equal{}a$.

2021 Taiwan TST Round 2, G

Let $ABCD$ be a convex quadrilateral with pairwise distinct side lengths such that $AC\perp BD$. Let $O_1,O_2$ be the circumcenters of $\Delta ABD, \Delta CBD$, respectively. Show that $AO_2, CO_1$, the Euler line of $\Delta ABC$ and the Euler line of $\Delta ADC$ are concurrent. (Remark: The [i]Euler line[/i] of a triangle is the line on which its circumcenter, centroid, and orthocenter lie.) [i]Proposed by usjl[/i]