Found problems: 1187
1997 IMC, 3
Show that $\sum^{\infty}_{n=1}\frac{(-1)^{n-1}\sin(\log n)}{n^\alpha}$ converges iff $\alpha>0$.
1996 Argentina National Olympiad, 5
Determine all positive real numbers $x$ for which $$\left [x\right ]+\left [\sqrt{1996x}\right ]=1996$$ is verified
Clarification:The brackets indicate the integer part of the number they enclose.
2014 Online Math Open Problems, 24
Let $\mathcal P$ denote the set of planes in three-dimensional space with positive $x$, $y$, and $z$ intercepts summing to one. A point $(x,y,z)$ with $\min \{x,y,z\} > 0$ lies on exactly one plane in $\mathcal P$. What is the maximum possible integer value of $\left(\frac{1}{4} x^2 + 2y^2 + 16z^2\right)^{-1}$?
[i]Proposed by Sammy Luo[/i]
2016 Tournament Of Towns, 2
Do there exist integers $a$ and $b$ such that :
(a) the equation $x^2 + ax + b = 0$ has no real roots, and the equation $\lfloor x^2 \rfloor + ax + b = 0$ has at
least one real root?
[i](2 points)[/i]
(b) the equation $x^2 + 2ax + b$ = 0 has no real roots, and the equation $\lfloor x^2 \rfloor + 2ax + b = 0$ has at
least one real root?
[i]3 points[/i]
(By $\lfloor k \rfloor$ we denote the integer part of $k$, that is, the greatest integer not exceeding $k$.)
[i]Alexandr Khrabrov[/i]
2015 Hanoi Open Mathematics Competitions, 7
Solve equation $x^4 = 2x^2 + \lfloor x \rfloor$, where $ \lfloor x \rfloor$ is an integral part of $x$.
2012 USAMO, 3
Determine which integers $n > 1$ have the property that there exists an infinite sequence $a_1, a_2, a_3, \ldots$ of nonzero integers such that the equality \[a_k+2a_{2k}+\ldots+na_{nk}=0\]holds for every positive integer $k$.
2019 MOAA, 6
Let $f(x, y) = \left\lfloor \frac{5x}{2y} \right\rfloor + \left\lceil \frac{5y}{2x} \right\rceil$. Suppose $x, y$ are chosen independently uniformly at random from the interval $(0, 1]$. Let $p$ be the probability that $f(x, y) < 6$. If $p$ can be expressed in the form $m/n$ for relatively prime positive integers $m$ and $n$, compute $m + n$.
(Note: $\lfloor x\rfloor $ is defined as the greatest integer less than or equal to $x$ and $\lceil x \rceil$ is defined as the least integer greater than or equal to$ x$.)
LMT Speed Rounds, 2021 F
[b]p1.[/b] Compute $21 \cdot 21 - 20 \cdot 20$.
[b]p2.[/b] A square has side length $2$. If the square is scaled by a factor of $n$, the perimeter of the new square is equal to the area of the original square. Find $10n$.
[b]p3.[/b] Kevin has $2$ red marbles and $2$ blue marbles in a box. He randomly grabs two marbles. The probability that they are the same color can be expressed as $\frac{a}{b}$ for relatively prime integers $a$ and $b$. Find $a +b$.
[b]p4.[/b] In a classroom, if the teacher splits the students into groups of $3$ or $4$, there is one student left out. If the students formgroups of $5$, every student is in a group. What is the fewest possible number of students in this classroom?
[b]p5.[/b] Find the sum of all positive integer values of $x$ such that $\lfloor \sqrt{x!} \rfloor = x$.
[b]p6.[/b] Find the number of positive integer factors of $2021^{(2^0+2^1)} \cdot 1202^{(1^2+0^2)}$.
[b]p7.[/b] Let $n$ be the number of days over a $13$ year span. Find the difference between the greatest and least possible values of $n$. Note: All years divisible by $4$ are leap years unless they are divisible by 100 but not $400$. For example, $2000$ and $2004$ are leap years, but $1900$ is not.
[b]p8.[/b] In isosceles $\vartriangle ABC$, $AB = AC$, and $\angle ABC = 72^o$. The bisector of $\angle ABC$ intersects $AC$ at $D$. Given that $BC = 30$, find $AD$.
[b]p9.[/b] For an arbitrary positive value of $x$, let $h$ be the area of a regular hexagon with side length $x$ and let $s$ be the area of a square with side length $x$. Find the value of $\left \lfloor \frac{10h}{s} \right \rfloor$.
[b]p10.[/b] There is a half-full tub of water with a base of $4$ inches by $5$ inches and a height of $8$ inches. When an infinitely long stick with base $1$ inch by $1$ inch is inserted vertically into the bottom of the tub, the number of inches the water level rises by can be written as $\frac{a}{b}$ where $a$ and $b$ are relatively prime positive integers. Find $a +b$.
[b]p11.[/b] Find the sum of all $4$-digit numbers with digits that are a permutation of the digits in $2021$. Note that positive integers cannot have first digit $0$.
[b]p12.[/b] A $10$-digit base $8$ integer is chosen at random. The probability that it has $30$ digits when written in base $2$ can be expressed as $\frac{a}{b}$, where $a$ and $b$ are relatively prime positive integers. Find $a +b$.
[b]p13.[/b] Call a natural number sus if it can be expressed as $k^2 +k +1$ for some positive integer $k$. Find the sum of all sus integers less than $2021$.
[b]p14.[/b] In isosceles triangle $ABC$, $D$ is the intersection of $AB$ and the perpendicular to $BC$ through $C$. Given that $CD = 5$ and $AB = BC = 1$, find $\sec^2 \angle ABC$.
[b]p15.[/b] Every so often, the minute and hour hands of a clock point in the same direction. The second time this happens after 1:00 is a b minutes later, where a and b are relatively prime positive integers. Find a +b.
[b]p16.[/b] The $999$-digit number $N = 123123...123$ is composed of $333$ iterations of the number $123$. Find the least nonnegative integerm such that $N +m$ is a multiple of $101$.
[b]p17.[/b] The sum of the reciprocals of the divisors of $2520$ can be written as $\frac{a}{b}$, where $a$ and $b$ are relatively prime positive integers. Find $a +b$.
[b]p18.[/b] Duncan, Paul, and $6$ Atreides guards are boarding three helicopters. Duncan, Paul, and the guards enter the helicopters at random, with the condition that Duncan and Paul do not enter the same helicopter. Note that not all helicoptersmust be occupied. The probability that Paul has more guards with him in his helicopter than Duncan does can be written as $\frac{a}{b}$ where $a$ and $b$ are relatively prime positive integers. Find $a +b$.
[b]p19.[/b] Let the minimum possible distance from the origin to the parabola $y = x^2 -2021$ be $d$. The value of d2 can be expressed as $\frac{a}{b}$ where $a$ and $b$ are relatively prime positive integers. Find $a +b$.
[b]p20.[/b] In quadrilateral $ABCD$ with interior point $E$ and area $49 \sqrt3$, $\frac{BE}{CE}= 2 \sqrt3$, $\angle ABC = \angle BCD = 90^o$, and $\vartriangle ABC \sim \vartriangle BCD \sim \vartriangle BEC$. The length of $AD$ can be expressed aspn where $n$ is a positive integer. Find $n$.
[b]p21.[/b] Find the value of
$$\sum^{\infty}_{i=1}\left( \frac{i^2}{2^{i-1}}+\frac{i^2}{2^{i}}+\frac{i^2}{2^{i+1}}\right)=\left( \frac{1^2}{2^{0}}+\frac{1^2}{2^{1}}+\frac{1^2}{2^{2}}\right)+\left( \frac{2^2}{2^{1}}+\frac{2^2}{2^{2}}+\frac{2^2}{2^{3}}\right)+\left( \frac{3^2}{2^{2}}+\frac{2^2}{2^{3}}+\frac{2^2}{2^{4}}\right)+...$$
[b]p22.[/b] Five not necessarily distinct digits are randomly chosen in some order. Let the probability that they form a nondecreasing sequence be $\frac{a}{b}$ , where $a$ and $b$ are relatively prime positive integers. Find the remainder when $a +b$ is divided by$ 1000$.
[b]p23.[/b] Real numbers $a$, $b$, $c$, and d satisfy $$ac -bd = 33$$
$$ad +bc = 56.$$ Given that $a^2 +b^2 = 5$, find the sum of all possible values of $c^2 +d^2$.
[b]p24.[/b] Jeff has a fair tetrahedral die with sides labeled $0$, $1$, $2$, and $3$. He continuously rolls the die and record the numbers rolled in that order. For example, if he rolls a $1$, then rolls a $2$, and then rolls a $3$, he writes down $123$. He keeps rolling the die until he writes the substring $2021$. What is the expected number of times he rolls the die?
[b]p25.[/b] In triangle $ABC$, $BC = 2\sqrt3$, and $AB = AC = 4\sqrt3$. Circle $\omega$ with center $O$ is tangent to segment $AB$ at $T$ , and $\omega$ is also tangent to ray $CB$ past $B$ at another point. Points $O, T$ , and $C$ are collinear. Let $r$ be the radius of $\omega$. Given that $r^2 = \frac{a}{b}$ where $a$ and $b$ are relatively prime positive integers, find $a +b$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1985 IMO Longlists, 65
Define the functions $f, F : \mathbb N \to \mathbb N$, by
\[f(n)=\left[ \frac{3-\sqrt 5}{2} n \right] , F(k) =\min \{n \in \mathbb N|f^k(n) > 0 \},\]
where $f^k = f \circ \cdots \circ f$ is $f$ iterated $n$ times. Prove that $F(k + 2) = 3F(k + 1) - F(k)$ for all $k \in \mathbb N.$
2007 Bundeswettbewerb Mathematik, 4
Let $a$ be a positive integer.
How many non-negative integer solutions x does the equation
$\lfloor \frac{x}{a}\rfloor = \lfloor \frac{x}{a+1}\rfloor$
have?
$\lfloor ~ \rfloor$ ---> [url=http://en.wikipedia.org/wiki/Floor_function]Floor Function[/url].
2003 Portugal MO, 5
A shepherd left, as an inheritance, to his children a flock of $k$ sheep, distributed as follows: the oldest received $\left\lfloor\frac{k}{2}\right\rfloor$ sheep, the middle one $\left\lfloor\frac{k}{3}\right\rfloor$ sheep and the youngest $\left\lfloor\frac{k}{5}\right\rfloor$ sheep. Knowing that there are no sheep left, determine all possible values for $k$.
2016 Thailand TSTST, 2
Determine all positive integers $M$ such that the sequence $a_0, a_1, a_2, \cdots$ defined by \[ a_0 = M + \frac{1}{2} \qquad \textrm{and} \qquad a_{k+1} = a_k\lfloor a_k \rfloor \quad \textrm{for} \, k = 0, 1, 2, \cdots \] contains at least one integer term.
2004 Gheorghe Vranceanu, 3
Let $ a,b,c $ be real numbers satisfying $ \left\lfloor a^2+b^2+c^2 \right\rfloor \le\lfloor ab+bc+ca \rfloor . $ Show that:
$$ 2 >\max\left\{ \left| -2a+b+c \right| ,\left| a-2b+c \right| ,\left| a+b-2c \right| \right\} $$
[i]Merticaru[/i]
2014 IMO Shortlist, N4
Let $n > 1$ be a given integer. Prove that infinitely many terms of the sequence $(a_k )_{k\ge 1}$, defined by \[a_k=\left\lfloor\frac{n^k}{k}\right\rfloor,\] are odd. (For a real number $x$, $\lfloor x\rfloor$ denotes the largest integer not exceeding $x$.)
[i]Proposed by Hong Kong[/i]
2010 India IMO Training Camp, 6
Let $n\ge 2$ be a given integer. Show that the number of strings of length $n$ consisting of $0'$s and $1'$s such that there are equal number of $00$ and $11$ blocks in each string is equal to
\[2\binom{n-2}{\left \lfloor \frac{n-2}{2}\right \rfloor}\]
2015 India Regional MathematicaI Olympiad, 6
For how many integer values of $m$,
(i) $1\le m \le 5000$
(ii) $[\sqrt{m}] =[\sqrt{m+125}]$
Note: $[x]$ is the greatest integer function
2009 China Team Selection Test, 1
Let $ \alpha,\beta$ be real numbers satisfying $ 1 < \alpha < \beta.$ Find the greatest positive integer $ r$ having the following property: each of positive integers is colored by one of $ r$ colors arbitrarily, there always exist two integers $ x,y$ having the same color such that $ \alpha\le \frac {x}{y}\le\beta.$
2018 International Zhautykov Olympiad, 5
Find all real numbers $a$ such that there exist $f:\mathbb{R} \to \mathbb{R}$ with $$f(x-f(y))=f(x)+a[y]$$ for all $x,y\in \mathbb{R}$
2004 Manhattan Mathematical Olympiad, 3
A prison has $2004$ cells, numbered $1$ through $2004$. A jailer, carrying out the terms of a partial amnesty, unlocked every cell. Next he locked every second cell. Then he turned the key in every third cell, locking the opened cells, and unlocking the locked ones. He continued this way, on $n^{\text{th}}$ trip, turning the key in every $n^{\text{th}}$ cell, and he finished his mission after $2004$ trips. How many prisoners were released?
2024 JHMT HS, 12
Let $\{ a_n \}_{n=0}^{\infty}$, $\{ b_n \}_{n=0}^{\infty}$, and $\{ c_n \}_{n=0}^{\infty}$ be sequences of real numbers such that for all $k\geq 1$,
\begin{align*}
a_k&=\left\lfloor \sqrt{2}+\frac{k-1}{2024} \right\rfloor+a_{k-1} \\
b_k+c_k&=1 \\
a_{k-1}b_k&=a_kc_k.
\end{align*}
Suppose that $a_0=1$, $b_0=2$, and $c_0=3$. Given that $\sqrt2\approx1.4142$, compute
\[ \sum_{k=1}^{2024}(a_kb_k-a_{k-1}c_k). \]
2007 Putnam, 3
Let $ x_0 \equal{} 1$ and for $ n\ge0,$ let $ x_{n \plus{} 1} \equal{} 3x_n \plus{} \left\lfloor x_n\sqrt {5}\right\rfloor.$ In particular, $ x_1 \equal{} 5,\ x_2 \equal{} 26,\ x_3 \equal{} 136,\ x_4 \equal{} 712.$ Find a closed-form expression for $ x_{2007}.$ ($ \lfloor a\rfloor$ means the largest integer $ \le a.$)
1989 All Soviet Union Mathematical Olympiad, 503
Find the smallest positive integer $n$ for which we can find an integer $m$ such that $\left[\frac{10^n}{m}\right] = 1989$.
2007 Romania Team Selection Test, 4
Let $S$ be the set of $n$-uples $\left( x_{1}, x_{2}, \ldots, x_{n}\right)$ such that $x_{i}\in \{ 0, 1 \}$ for all $i \in \overline{1,n}$, where $n \geq 3$. Let $M(n)$ be the smallest integer with the property that any subset of $S$ with at least $M(n)$ elements contains at least three $n$-uples \[\left( x_{1}, \ldots, x_{n}\right), \, \left( y_{1}, \ldots, y_{n}\right), \, \left( z_{1}, \ldots, z_{n}\right) \] such that
\[\sum_{i=1}^{n}\left( x_{i}-y_{i}\right)^{2}= \sum_{i=1}^{n}\left( y_{i}-z_{i}\right)^{2}= \sum_{i=1}^{n}\left( z_{i}-x_{i}\right)^{2}. \]
(a) Prove that $M(n) \leq \left\lfloor \frac{2^{n+1}}{n}\right\rfloor+1$.
(b) Compute $M(3)$ and $M(4)$.
1982 Tournament Of Towns, (027) 1
Prove that for all natural numbers $n$ greater than $1$ :
$$[\sqrt{n}] + [\sqrt[3]{n}] +...+[ \sqrt[n]{n}] = [\log_2 n] + [\log_3 n] + ... + [\log_n n]$$
(VV Kisil)
1999 Taiwan National Olympiad, 3
There are $1999$ people participating in an exhibition. Among any $50$ people there are two who don't know each other. Prove that there are $41$ people, each of whom knows at most $1958$ people.