This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2014 Singapore Senior Math Olympiad, 26

Suppose that $x$ is measured in radians. Find the maximum value of \[\frac{\sin2x+\sin4x+\sin6x}{\cos2x+\cos4x+\cos6x}\] for $0\le x\le \frac{\pi}{16}$

2005 Unirea, 4

$a>0$ $f:[-a,a]\rightarrow R$ such that $f''$ exist and Riemann-integrable suppose $f(a)=f(-a)$ $ f'(-a)=f'(a)=a^2$ Prove that $6a^3\leq \int_{-a}^{a}{f''(x)}^2dx$ Study equality case ? Radu Miculescu

2025 Romania National Olympiad, 1

Find all pairs of twice differentiable functions $f,g \colon \mathbb{R} \to \mathbb{R}$, with their second derivative being continuous, such that the following holds for all $x,y \in \mathbb{R}$: \[(f(x)-g(y))(f'(x)-g'(y))(f''(x)-g''(y))=0\]

2022 Vietnam TST, 1

Given a real number $\alpha$ and consider function $\varphi(x)=x^2e^{\alpha x}$ for $x\in\mathbb R$. Find all function $f:\mathbb R\to\mathbb R$ that satisfy: $$f(\varphi(x)+f(y))=y+\varphi(f(x))$$ forall $x,y\in\mathbb R$

2010 SEEMOUS, Problem 1

Let $f_0:[0,1]\to\mathbb R$ be a continuous function. Define the sequence of functions $f_n:[0,1]\to\mathbb R$ by $$f_n(x)=\int^x_0f_{n-1}(t)dt$$ for all integers $n\ge1$. a) Prove that the series $\sum_{n=1}^\infty f_n(x)$ is convergent for every $x\in[0,1]$. b) Find an explicit formula for the sum of the series $\sum_{n=1}^\infty f_n(x),x\in[0,1]$.

2006 Iran Team Selection Test, 5

Let $ABC$ be an acute angle triangle. Suppose that $D,E,F$ are the feet of perpendicluar lines from $A,B,C$ to $BC,CA,AB$. Let $P,Q,R$ be the feet of perpendicular lines from $A,B,C$ to $EF,FD,DE$. Prove that \[ 2(PQ+QR+RP)\geq DE+EF+FD \]

1975 Canada National Olympiad, 7

A function $ f(x)$ is [i]periodic[/i] if there is a positive number $ p$ such that $ f(x\plus{}p) \equal{} f(x)$ for all $ x$. For example, $ \sin x$ is periodic with period $ 2 \pi$. Is the function $ \sin(x^2)$ periodic? Prove your assertion.

2008 Middle European Mathematical Olympiad, 2

On a blackboard there are $ n \geq 2, n \in \mathbb{Z}^{\plus{}}$ numbers. In each step we select two numbers from the blackboard and replace both of them by their sum. Determine all numbers $ n$ for which it is possible to yield $ n$ identical number after a finite number of steps.

2014 India IMO Training Camp, 3

For integers $a,b$ we define $f((a,b))=(2a,b-a)$ if $a<b$ and $f((a,b))=(a-b,2b)$ if $a\geq b$. Given a natural number $n>1$ show that there exist natural numbers $m,k$ with $m<n$ such that $f^{k}((n,m))=(m,n)$,where $f^{k}(x)=f(f(f(...f(x))))$,$f$ being composed with itself $k$ times.

2016 Peru IMO TST, 13

Let $\mathbb{Z}_{>0}$ denote the set of positive integers. Consider a function $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$. For any $m, n \in \mathbb{Z}_{>0}$ we write $f^n(m) = \underbrace{f(f(\ldots f}_{n}(m)\ldots))$. Suppose that $f$ has the following two properties: (i) if $m, n \in \mathbb{Z}_{>0}$, then $\frac{f^n(m) - m}{n} \in \mathbb{Z}_{>0}$; (ii) The set $\mathbb{Z}_{>0} \setminus \{f(n) \mid n\in \mathbb{Z}_{>0}\}$ is finite. Prove that the sequence $f(1) - 1, f(2) - 2, f(3) - 3, \ldots$ is periodic. [i]Proposed by Ang Jie Jun, Singapore[/i]

2018 Iran Team Selection Test, 1

Find all functions $f:\mathbb{R}\rightarrow \mathbb{R}$ that satisfy the following conditions: a. $x+f(y+f(x))=y+f(x+f(y)) \quad \forall x,y \in \mathbb{R}$ b. The set $I=\left\{\frac{f(x)-f(y)}{x-y}\mid x,y\in \mathbb{R},x\neq y \right\}$ is an interval. [i]Proposed by Navid Safaei[/i]

1976 Chisinau City MO, 129

The function $f (x)$ satisfies the relation $f(x+\pi)=\frac{f(x)}{3f(x) -1}$ for any real number $x$. Prove that the function $f (x)$ is periodic.

2007 Today's Calculation Of Integral, 246

An eighth degree polynomial funtion $ y \equal{} ax^8 \plus{} bx^7 \plus{} cx^6 \plus{} dx^5 \plus{} ex^4 \plus{} fx^3 \plus{} gx^2\plus{}hx\plus{}i\ (a\neq 0)$ touches the line $ y \equal{} px \plus{} q$ at $ x \equal{} \alpha ,\ \beta ,\ \gamma ,\ \delta \ (\alpha < \beta < \gamma <\delta).$ Find the area of the region bounded by these graphs in terms of $ a,\ \alpha ,\ \beta ,\gamma ,\ \delta .$

1992 USAMO, 1

Find, as a function of $\, n, \,$ the sum of the digits of \[ 9 \times 99 \times 9999 \times \cdots \times \left( 10^{2^n} - 1 \right), \] where each factor has twice as many digits as the previous one.

1993 IMO Shortlist, 5

$a > 0$ and $b$, $c$ are integers such that $ac$ – $b^2$ is a square-free positive integer P. [hide="For example"] P could be $3*5$, but not $3^2*5$.[/hide] Let $f(n)$ be the number of pairs of integers $d, e$ such that $ad^2 + 2bde + ce^2= n$. Show that$f(n)$ is finite and that $f(n) = f(P^{k}n)$ for every positive integer $k$. [b]Original Statement:[/b] Let $a,b,c$ be given integers $a > 0,$ $ac-b^2 = P = P_1 \cdots P_n$ where $P_1 \cdots P_n$ are (distinct) prime numbers. Let $M(n)$ denote the number of pairs of integers $(x,y)$ for which \[ ax^2 + 2bxy + cy^2 = n. \] Prove that $M(n)$ is finite and $M(n) = M(P_k \cdot n)$ for every integer $k \geq 0.$ Note that the "$n$" in $P_N$ and the "$n$" in $M(n)$ do not have to be the same.

2008 South africa National Olympiad, 6

Find all function pairs $(f,g)$ where each $f$ and $g$ is a function defined on the integers and with values, such that, for all integers $a$ and $b$, \[f(a+b)=f(a)g(b)+g(a)f(b)\\ g(a+b)=g(a)g(b)-f(a)f(b).\]

1975 Putnam, A5

Let $I\subset \mathbb{R}$ be an interval and $f(x)$ a continuous real-valued function on $I$. Let $y_1$ and $y_2$ be linearly independent solutions of $y''=f(x)y$ taking positive values on $I$. Show that for some positive number $k$ the function $k\cdot\sqrt{y_1 y_2}$ is a solution of $y''+\frac{1}{y^{3}}=f(x)y$.

2010 Indonesia TST, 1

Is there a triangle with angles in ratio of $ 1: 2: 4$ and the length of its sides are integers with at least one of them is a prime number? [i]Nanang Susyanto, Jogjakarta[/i]

2022 SG Originals, Q2

Find all functions $f$ mapping non-empty finite sets of integers, to integers, such that $$f(A+B)=f(A)+f(B)$$ for all non-empty sets of integers $A$ and $B$. $A+B$ is defined as $\{a+b: a \in A, b \in B\}$.

2007 Gheorghe Vranceanu, 2

Let be areal number $ r, $ a nonconstant and continuous function $ f:\mathbb{R}\longrightarrow\mathbb{R} $ with period $ T $ and $ F $ be its primitive having $ F(0)=0. $ Define the funtion $ g:\mathbb{R}\longrightarrow\mathbb{R} $ as $$ g(x)=\left\{\begin{matrix} f(1/x), & x\neq 0 \\ r, & x=0 \end{matrix}\right. $$ Prove that: [b]a)[/b] the image of $ f $ is closed. [b]b)[/b] $ g $ has the intermediate value property if and only if $ r\in f\left(\mathbb{R}\right) . $ [b]c)[/b] $ g $ is primitivable if and only if $ r=\frac{F(T)}{T} . $

1995 Belarus Team Selection Test, 3

Show that there is no infinite sequence an of natural numbers such that \[a_{a_n}=a_{n+1}a_{n-1}-a_{n}^2\] for all $n\geq 2$

2018 Bulgaria EGMO TST, 3

Find all one-to-one mappings $f:\mathbb{N}\to\mathbb{N}$ such that for all positive integers $n$ the following relation holds: \[ f(f(n)) \leq \frac {n+f(n)} 2 . \]

2004 Romania Team Selection Test, 13

Let $m\geq 2$ be an integer. A positive integer $n$ has the property that for any positive integer $a$ coprime with $n$, we have $a^m - 1\equiv 0 \pmod n$. Prove that $n \leq 4m(2^m-1)$. Created by Harazi, modified by Marian Andronache.

2014-2015 SDML (High School), 2

Tags: function
What is the maximum value of the function $$\frac{1}{\left|x+1\right|+\left|x+2\right|+\left|x-3\right|}?$$ $\text{(A) }\frac{1}{3}\qquad\text{(B) }\frac{1}{4}\qquad\text{(C) }\frac{1}{5}\qquad\text{(D) }\frac{1}{6}\qquad\text{(E) }\frac{1}{7}$

2016 Azerbaijan BMO TST, 4

Find all functions $f:\mathbb{N}\to\mathbb{N}$ such that \[f(f(n))=n+2015\] where $n\in \mathbb{N}.$