Found problems: 4776
2009 Ukraine National Mathematical Olympiad, 3
Point $O$ is inside triangle $ABC$ such that $\angle AOB = \angle BOC = \angle COA = 120^\circ .$ Prove that
\[\frac{AO^2}{BC}+\frac{BO^2}{CA}+\frac{CO^2}{AB} \geq \frac{AO+BO+CO}{\sqrt 3}.\]
2024 VJIMC, 1
Let $f:\mathbb{R} \to \mathbb{R}$ be a continuously differentiable function. Prove that
\[\left\vert f(1)-\int_0^1 f(x) dx\right\vert \le \frac{1}{2} \max_{x \in [0,1]} \vert f'(x)\vert.\]
2009 Today's Calculation Of Integral, 397
In $ xy$ plane, find the minimum volume of the solid by rotating the region boubded by the parabola $ y \equal{} x^2 \plus{} ax \plus{} b$ passing through the point $ (1,\ \minus{} 1)$ and the $ x$ axis about the $ x$ axis
2004 IMO Shortlist, 3
Find all functions $ f: \mathbb{N^{*}}\to \mathbb{N^{*}}$ satisfying
\[ \left(f^{2}\left(m\right)+f\left(n\right)\right) \mid \left(m^{2}+n\right)^{2}\]
for any two positive integers $ m$ and $ n$.
[i]Remark.[/i] The abbreviation $ \mathbb{N^{*}}$ stands for the set of all positive integers:
$ \mathbb{N^{*}}=\left\{1,2,3,...\right\}$.
By $ f^{2}\left(m\right)$, we mean $ \left(f\left(m\right)\right)^{2}$ (and not $ f\left(f\left(m\right)\right)$).
[i]Proposed by Mohsen Jamali, Iran[/i]
1984 Polish MO Finals, 1
Find the number of all real functions $f$ which map the sum of $n$ elements into the sum of their images, such that $f^{n-1}$ is a constant function and $f^{n-2}$ is not. Here $f^0(x) = x$ and $f^k = f \circ f^{k-1}$ for $k \ge 1$.
1993 AMC 12/AHSME, 24
A box contains $3$ shiny pennies and $4$ dull pennies. One by one, pennies are drawn at random from the box and not replaced. If the probability is $\frac{a}{b}$ that it will take more than four draws until the third shiny penny appears and $\frac{a}{b}$ is in lowest terms, then $a+b=$
$ \textbf{(A)}\ 11 \qquad\textbf{(B)}\ 20 \qquad\textbf{(C)}\ 35 \qquad\textbf{(D)}\ 58 \qquad\textbf{(E)}\ 66 $
2003 National Olympiad First Round, 16
For which of the following values of real number $t$, the equation $x^4-tx+\dfrac 1t = 0$ has no root on the interval $[1,2]$?
$
\textbf{(A)}\ 6
\qquad\textbf{(B)}\ 7
\qquad\textbf{(C)}\ 8
\qquad\textbf{(D)}\ 9
\qquad\textbf{(E)}\ \text{None of the preceding}
$
1988 Nordic, 4
Let $m_n$ be the smallest value of the function ${{f}_{n}}\left( x \right)=\sum\limits_{k=0}^{2n}{{{x}^{k}}}$
Show that $m_n \to \frac{1}{2}$, as $n \to \infty.$
VMEO II 2005, 7
Find all function $f:[0,\infty )\to\mathbb{R}$ such that $f$ is monotonic and \[ [f(x)+f(y)]^2=f(x^2-y^2)+f(2xy) \] for all $x\geq y\geq 0$
1982 AMC 12/AHSME, 15
Let $[z]$ denote the greatest integer not exceeding $z$. Let $x$ and $y$ satisfy the simultaneous equations
\[ \begin{array}{c} y=2[x]+3, \\ y=3[x-2]+5. \end{array} \]If $x$ is not an integer, then $x+y$ is
$\textbf {(A) } \text{an integer} \qquad \textbf {(B) } \text{between 4 and 5} \qquad \textbf {(C) } \text{between -4 and 4} \qquad \textbf {(D) } \text{between 15 and 16} \qquad \textbf {(E) } 16.5$
Dumbest FE I ever created, 3.
Let $c_1,c_2 \in \mathbb{R^+}$. Find all $f : \mathbb{R^+} \rightarrow \mathbb{R^+}$ such that for all $x,y \in \mathbb{R^+}$ $$f(x+c_1f(y))=f(x)+c_2f(y)$$
1963 AMC 12/AHSME, 30
Let \[F=\log\dfrac{1+x}{1-x}.\] Find a new function $G$ by replacing each $x$ in $F$ by \[\dfrac{3x+x^3}{1+3x^2},\] and simplify. The simplified expression $G$ is equal to:
$\textbf{(A)}\ -F \qquad
\textbf{(B)}\ F\qquad
\textbf{(C)}\ 3F \qquad
\textbf{(D)}\ F^3 \qquad
\textbf{(E)}\ F^3-F$
Today's calculation of integrals, 872
Let $n$ be a positive integer.
(1) For a positive integer $k$ such that $1\leq k\leq n$, Show that :
\[\int_{\frac{k-1}{2n}\pi}^{\frac{k}{2n}\pi} \sin 2nt\cos t\ dt=(-1)^{k+1}\frac{2n}{4n^2-1}(\cos \frac{k}{2n}\pi +\cos \frac{k-1}{2n}\pi).\]
(2) Find the area $S_n$ of the part expressed by a parameterized curve $C_n: x=\sin t,\ y=\sin 2nt\ (0\leq t\leq \pi).$
If necessary, you may use ${\sum_{k=1}^{n-1} \cos \frac{k}{2n}\pi =\frac 12(\frac{1}{\tan \frac{\pi}{4n}}-1})\ (n\geq 2).$
(3) Find $\lim_{n\to\infty} S_n.$
1996 Tournament Of Towns, (521) 4
Prove that for any function $f(x)$, continuous or otherwise, $$f(f(x)) = x^2 - 1996$$ cannot hold for all real numbers $x$.
(S Bogatiy, M Smurov,)
2005 National Olympiad First Round, 19
What is the greatest real root of the equation $x^3-x^2-x-\frac 13 = 0$?
$
\textbf{(A)}\ \dfrac{\sqrt {3} - \sqrt{2}}{2}
\qquad\textbf{(B)}\ \dfrac{\sqrt [3]{3} - \sqrt[3]{2}}{2}
\qquad\textbf{(C)}\ \dfrac 1{\sqrt[3] {3} - 1}
\qquad\textbf{(D)}\ \dfrac 1{\sqrt[3] {4} - 1}
\qquad\textbf{(E)}\ \text{None of above}
$
2001 Bundeswettbewerb Mathematik, 4
A square $ R$ of sidelength $ 250$ lies inside a square $ Q$ of sidelength $ 500$. Prove that: One can always find two points $ A$ and $ B$ on the perimeter of $ Q$ such that the segment $ AB$ has no common point with the square $ R$, and the length of this segment $ AB$ is greater than $ 521$.
2012 Romania National Olympiad, 2
[color=darkred]Find all functions $f:\mathbb{R}\to\mathbb{R}$ with the following property: for any open bounded interval $I$, the set $f(I)$ is an open interval having the same length with $I$ .[/color]
2004 India IMO Training Camp, 2
Define a function $g: \mathbb{N} \mapsto \mathbb{N}$ by the following rule:
(a) $g$ is nondecrasing
(b) for each $n$, $g(n)$ i sthe number of times $n$ appears in the range of $g$,
Prove that $g(1) = 1$ and $g(n+1) = 1 + g( n +1 - g(g(n)))$ for all $n \in \mathbb{N}$
1992 National High School Mathematics League, 12
The maximum value of function $f(x)=\sqrt{x^4-3x^2-6x+13}-\sqrt{x^4-x^2+1}$ is________.
2010 Austria Beginners' Competition, 3
Let $x$ and $y$ be positive real numbers with $x + y =1 $. Prove that
$$\frac{(3x-1)^2}{x}+ \frac{(3y-1)^2}{y} \ge1.$$ For which $x$ and $y$ equality holds?
(K. Czakler, GRG 21, Vienna)
2009 District Olympiad, 1
Let $ f,g:\mathbb{R}\longrightarrow\mathbb{R} $ be functions with the property that
$$ f\left( g(x) \right) =g\left( f(x) \right) =-x,\quad\forall x\in\mathbb{R} $$
[b]a)[/b] Show that $ f,g $ are odd.
[b]b)[/b] Give a concrete example of such $ f,g. $
2021 Iran RMM TST, 2
Let $f : \mathbb{R}^+\to\mathbb{R}$ satisfying $f(x)=f(x+2)+2f(x^2+2x)$. Prove that if for all $x>1400^{2021}$, $xf(x) \le 2021$, then $xf(x) \le 2021$ for all $x \in \mathbb {R}^+$
Proposed by [i]Navid Safaei[/i]
1987 Vietnam National Olympiad, 2
Let $ f : [0, \plus{}\infty) \to \mathbb R$ be a differentiable function. Suppose that $ \left|f(x)\right| \le 5$ and $ f(x)f'(x) \ge \sin x$ for all $ x \ge 0$. Prove that there exists $ \lim_{x\to\plus{}\infty}f(x)$.
2017 Israel National Olympiad, 6
Let $f:\mathbb{Q}\times\mathbb{Q}\to\mathbb{Q}$ be a function satisfying:
[list]
[*] For any $x_1,x_2,y_1,y_2 \in \mathbb Q$, $$f\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right) \leq \frac{f(x_1,y_1)+f(x_2,y_2)}{2}.$$
[*] $f(0,0) \leq 0$.
[*] For any $x,y \in \mathbb Q$ satisfying $x^2+y^2>100$, the inequality $f(x,y)>1$ holds.\
Prove that there is some positive rational number $b$ such that for all rationals $x,y$, $$f(x,y) \ge b\sqrt{x^2+y^2} - \frac{1}{b}.$$
2014 Saudi Arabia BMO TST, 2
Let $\mathbb{N}$ denote the set of positive integers, and let $S$ be a set. There exists a function $f :\mathbb{N} \rightarrow S$ such that if $x$ and $y$ are a pair of positive integers with their difference being a prime number, then $f(x) \neq f(y)$. Determine the minimum number of elements in $S$.