Found problems: 4776
2003 Vietnam National Olympiad, 3
Let $\mathcal{F}$ be the set of all functions $f : (0,\infty)\to (0,\infty)$ such that $f(3x) \geq f( f(2x) )+x$ for all $x$. Find the largest $A$ such that $f(x) \geq A x$ for all $f\in\mathcal{F}$ and all $x$.
2023 CMI B.Sc. Entrance Exam, 6
Consider a positive integer $a > 1$. If $a$ is not a perfect square then at the next move we add $3$ to it and if it is a perfect square we take the square root of it. Define the trajectory of a number $a$ as the set obtained by performing this operation on $a$. For example the cardinality of $3$ is $\{3, 6, 9\}$.
Find all $n$ such that the cardinality of $n$ is finite.
The following part problems may attract partial credit.
$\textbf{(a)}$Show that the cardinality of the trajectory of a number cannot be $1$ or $2$.
$\textbf{(b)}$Show that $\{3, 6, 9\}$ is the only trajectory with cardinality $3$.
$\textbf{(c)}$ Show that there for all $k \geq 3$, there exists a number such that the cardinality
of its trajectory is $k$.
$\textbf{(d)}$ Give an example of a number with cardinality of trajectory as infinity.
Oliforum Contest II 2009, 2
Let a convex quadrilateral $ ABCD$ fixed such that $ AB \equal{} BC$, $ \angle ABC \equal{} 80, \angle CDA \equal{} 50$. Define $ E$ the midpoint of $ AC$; show that $ \angle CDE \equal{} \angle BDA$
[i](Paolo Leonetti)[/i]
2008 Moldova National Olympiad, 9.8
Prove that \[ \frac{a}{b+2c+3d} +\frac{b}{c+2d+3a} +\frac{c}{d+2a+3b}+ \frac{d}{a+2b+3c} \geq \frac{2}{3} \] for all positive real numbers $a,b,c,d$.
2010 Laurențiu Panaitopol, Tulcea, 3
Let be a twice-differentiable function $ f:\mathbb{R}\longrightarrow\mathbb{R} $ that has the properties that:
$ \text{(i) supp} f''=f\left(\mathbb{R}\right) $
$ \text{(ii)}\exists g:\mathbb{R}\longrightarrow\mathbb{R}\quad\forall x\in\mathbb{R}\quad f(x+1)=f(x)+f'\left( g(x)\right)\text{ and } f'(x+1)=f'(x)+f''\left( g(x)\right) $
Prove that:
[b]a)[/b] any such $ g $ is injective.
[b]b)[/b] $ f $ is of class $ C^{\infty } , $ and for any natural number $ n, $ any real number $ x $ and any such $ g, $
$$f^{(n)}(x+1)=f^{(n)}(x)+f^{(n+1)}\left( g(x)\right) . $$
[i]Laurențiu Panaitopol[/i]
1978 Romania Team Selection Test, 2
Let $ k $ be a natural number. A function $ f:S:=\left\{ x_1,x_2,...,x_k\right\}\longrightarrow\mathbb{R} $ is said to be [i]additive[/i] if, whenever $ n_1x_1+n_2x_2+\cdots +n_kx_k=0, $ it holds that $ n_1f\left( x_1\right)+n_2f\left( x_2\right)+\cdots +n_kf\left( x_k\right)=0, $ for all natural numbers $ n_1,n_2,...,n_k. $
Show that for every additive function and for every finite set of real numbers $ T, $ there exists a second function, which is a real additive function defined on $ S\cup T $ and which is equal to the former on the restriction $ S. $
2011 China Team Selection Test, 2
Let $n$ be a positive integer and let $\alpha_n $ be the number of $1$'s within binary representation of $n$.
Show that for all positive integers $r$,
\[2^{2n-\alpha_n}\phantom{-1} \bigg|^{\phantom{0}}_{\phantom{-1}} \sum_{k=-n}^{n} \binom{2n}{n+k} k^{2r}.\]
1998 IMC, 4
The function $f: \mathbb{R}\rightarrow\mathbb{R}$ is twice differentiable and satisfies $f(0)=2,f'(0)=-2,f(1)=1$.
Prove that there is a $\xi \in ]0,1[$ for which we have $f(\xi)\cdot f'(\xi)+f''(\xi)=0$.
1987 Romania Team Selection Test, 10
Let $a,b,c$ be integer numbers such that $(a+b+c) \mid (a^{2}+b^{2}+c^{2})$. Show that there exist infinitely many positive integers $n$ such that $(a+b+c) \mid (a^{n}+b^{n}+c^{n})$.
[i]Laurentiu Panaitopol[/i]
2004 Moldova Team Selection Test, 6
Find all functions $f:\mathbb R \to \mathbb R$ Such that for all real $x,y$:
$(x^2+xy+y^2)(f(x)-f(y))=f(x^3)-f(y^3)$
2005 Brazil Undergrad MO, 2
Let $f$ and $g$ be two continuous, distinct functions from $[0,1] \rightarrow (0,+\infty)$ such that
$\int_{0}^{1}f(x)dx = \int_{0}^{1}g(x)dx$
Let
$y_n=\int_{0}^{1}{\frac{f^{n+1}(x)}{g^{n}(x)}dx}$, for $n\geq 0$, natural.
Prove that $(y_n)$ is an increasing and divergent sequence.
2007 Today's Calculation Of Integral, 184
(1) For real numbers $x,\ a$ such that $0<x<a,$ prove the following inequality.
\[\frac{2x}{a}<\int_{a-x}^{a+x}\frac{1}{t}\ dt<x\left(\frac{1}{a+x}+\frac{1}{a-x}\right). \]
(2) Use the result of $(1)$ to prove that $0.68<\ln 2<0.71.$
2014 Iran Team Selection Test, 3
let $m,n\in \mathbb{N}$ and $p(x),q(x),h(x)$ are polynomials with real Coefficients such that $p(x)$ is Descending.
and for all $x\in \mathbb{R}$
$p(q(nx+m)+h(x))=n(q(p(x))+h(x))+m$ .
prove that dont exist function $f:\mathbb{R}\rightarrow \mathbb{R}$ such that for all $x\in \mathbb{R}$
$f(q(p(x))+h(x))=f(x)^{2}+1$
2006 South East Mathematical Olympiad, 1
Suppose $a>b>0$, $f(x)=\dfrac{2(a+b)x+2ab}{4x+a+b}$. Show that there exists an unique positive number $x$, such that $f(x)=\left(\dfrac{a^{\frac{1}{3}}+b^{\frac{1}{3}}}{2} \right)^3$.
1994 Vietnam Team Selection Test, 3
Calculate
\[T = \sum \frac{1}{n_1! \cdot n_2! \cdot \cdots n_{1994}! \cdot (n_2 + 2 \cdot n_3 + 3 \cdot n_4 + \ldots + 1993 \cdot n_{1994})!}\]
where the sum is taken over all 1994-tuples of the numbers $n_1, n_2, \ldots, n_{1994} \in \mathbb{N} \cup \{0\}$ satisfying $n_1 + 2 \cdot n_2 + 3 \cdot n_3 + \ldots + 1994 \cdot n_{1994} = 1994.$
1991 AIME Problems, 7
Find $A^2$, where $A$ is the sum of the absolute values of all roots of the following equation: \begin{eqnarray*}x &=& \sqrt{19} + \frac{91}{{\displaystyle \sqrt{19}+\frac{91}{{\displaystyle \sqrt{19}+\frac{91}{{\displaystyle \sqrt{19}+\frac{91}{{\displaystyle \sqrt{19}+\frac{91}{x}}}}}}}}}\end{eqnarray*}
2011 Today's Calculation Of Integral, 684
On the $xy$ plane, find the area of the figure bounded by the graphs of $y=x$ and $y=\left|\ \frac34 x^2-3\ \right |-2$.
[i]2011 Kyoto University entrance exam/Science, Problem 3[/i]
2000 Taiwan National Olympiad, 3
Define a function $f:\mathbb{N}\rightarrow\mathbb{N}_0$ by $f(1)=0$ and
\[f(n)=\max_j\{ f(j)+f(n-j)+j\}\quad\forall\, n\ge 2 \]
Determine $f(2000)$.
1987 IMO Longlists, 38
Let $S_1$ and $S_2$ be two spheres with distinct radii that touch externally. The spheres lie inside a cone $C$, and each sphere touches the cone in a full circle. Inside the cone there are $n$ additional solid spheres arranged in a ring in such a way that each solid sphere touches the cone $C$, both of the spheres $S_1$ and $S_2$ externally, as well as the two neighboring solid spheres. What are the possible values of $n$?
[i]Proposed by Iceland.[/i]
2013 Saudi Arabia IMO TST, 2
Let $S = f\{0.1. 2.3,...\}$ be the set of the non-negative integers. Find all strictly increasing functions $f : S \to S$ such that $n + f(f(n)) \le 2f(n)$ for every $n$ in $S$
2010 ISI B.Math Entrance Exam, 2
In the accompanying figure , $y=f(x)$ is the graph of a one-to-one continuous function $f$ . At each point $P$ on the graph of $y=2x^2$ , assume that the areas $OAP$ and $OBP$ are equal . Here $PA,PB$ are the horizontal and vertical segments . Determine the function $f$.
[asy]
Label f;
xaxis(0,60,blue);
yaxis(0,60,blue);
real f(real x)
{
return (x^2)/60;
}
draw(graph(f,0,53),red);
label("$y=x^2$",(30,15),E);
real f(real x)
{
return (x^2)/25;
}
draw(graph(f,0,38),red);
label("$y=2x^2$",(37,37^2/25),E);
real f(real x)
{
return (x^2)/10;
}
draw(graph(f,0,25),red);
label("$y=f(x)$",(24,576/10),W);
label("$O(0,0)$",(0,0),S);
dot((20,400/25));
dot((20,400/60));
label("$P$",(20,400/25),E);
label("$B$",(20,400/60),SE);
dot(((4000/25)^(0.5),400/25));
label("$A$",((4000/25)^(0.5),400/25),W);
draw((20,400/25)..((4000/25)^(0.5),400/25));
draw((20,400/25)..(20,400/60));
[/asy]
2015 USA Team Selection Test, 2
Prove that for every $n\in \mathbb N$, there exists a set $S$ of $n$ positive integers such that for any two distinct $a,b\in S$, $a-b$ divides $a$ and $b$ but none of the other elements of $S$.
[i]Proposed by Iurie Boreico[/i]
1976 Miklós Schweitzer, 10
Suppose that $ \tau$ is a metrizable topology on a set $ X$ of cardinality less than or equal to continuum. Prove that there exists a separable and metrizable topology on $ X$ that is coarser that $ \tau$.
[i]L. Juhasz[/i]
2000 Moldova National Olympiad, Problem 5
Let $ p$ be a positive integer. Define the function $ f: \mathbb{N}\to\mathbb{N}$ by $ f(n)\equal{}a_1^p\plus{}a_2^p\plus{}\cdots\plus{}a_m^p$, where $ a_1, a_2,\ldots, a_m$ are the decimal digits of $ n$ ($ n\equal{}\overline{a_1a_2\ldots a_m}$). Prove that every sequence $ (b_k)^\infty_{k\equal{}0}$ of positive integer that satisfy $ b_{k\plus{}1}\equal{}f(b_k)$ for all $ k\in\mathbb{N}$, has a finite number of distinct terms. $ \mathbb{N}\equal{}\{1,2,3\ldots\}$
2003 Vietnam National Olympiad, 1
Let $f: \mathbb{R}\to\mathbb{R}$ is a function such that $f( \cot x ) = \cos 2x+\sin 2x$ for all $0 < x < \pi$. Define $g(x) = f(x) f(1-x)$ for $-1 \leq x \leq 1$. Find the maximum and minimum values of $g$ on the closed interval $[-1, 1].$