Found problems: 4776
2013 Harvard-MIT Mathematics Tournament, 35
Let $P$ be the number of ways to partition $2013$ into an ordered tuple of prime numbers. What is $\log_2 (P)$? If your answer is $A$ and the correct answer is $C$, then your score on this problem will be $\left\lfloor\frac{125}2\left(\min\left(\frac CA,\frac AC\right)-\frac35\right)\right\rfloor$ or zero, whichever is larger.
2017 AMC 12/AHSME, 7
Define a function on the positive integers recursively by $f(1) = 2$, $f(n) = f(n-1) + 1$ if $n$ is even, and $f(n) = f(n-2) + 2$ if $n$ is odd and greater than $1$. What is $f(2017)$?
$\textbf{(A) } 2017 \qquad \textbf{(B) } 2018 \qquad \textbf{(C) } 4034 \qquad \textbf{(D) } 4035 \qquad \textbf{(E) } 4036$
2005 All-Russian Olympiad, 1
Do there exist a bounded function $f: \mathbb{R}\to\mathbb{R}$ such that $f(1)>0$ and $f(x)$ satisfies an inequality $f^2(x+y)\ge f^2(x)+2f(xy)+f^2(y)$?
2014 ELMO Shortlist, 8
Let $a, b, c$ be positive reals with $a^{2014}+b^{2014}+c^{2014}+abc=4$. Prove that
\[ \frac{a^{2013}+b^{2013}-c}{c^{2013}} + \frac{b^{2013}+c^{2013}-a}{a^{2013}} + \frac{c^{2013}+a^{2013}-b}{b^{2013}} \ge a^{2012}+b^{2012}+c^{2012}. \][i]Proposed by David Stoner[/i]
2009 Miklós Schweitzer, 10
Let $ U\subset\mathbb R^n$ be an open set, and let $ L: U\times\mathbb R^n\to\mathbb R$ be a continuous, in its second variable first order positive homogeneous, positive over $ U\times (\mathbb R^n\setminus\{0\})$ and of $ C^2$-class Langrange function, such that for all $ p\in U$ the Gauss-curvature of the hyper surface
\[ \{ v\in\mathbb R^n \mid L(p,v) \equal{} 1 \}\]
is nowhere zero. Determine the extremals of $ L$ if it satisfies the following system
\[ \sum_{k \equal{} 1}^n y^k\partial_k\partial_{n \plus{} i}L \equal{} \sum_{k \equal{} 1}^n y^k\partial_i\partial_{n \plus{} k} L \qquad (i\in\{1,\dots,n\})\]
of partial differetial equations, where $ y^k(u,v) : \equal{} v^k$ for $ (u,v)\in U\times\mathbb R^k$, $ v \equal{} (v^1,\dots,v^k)$.
1980 IMO Longlists, 7
The function $f$ is defined on the set $\mathbb{Q}$ of all rational numbers and has values in $\mathbb{Q}$. It satisfies the conditions $f(1) = 2$ and $f(xy) = f(x)f(y) - f(x+y) + 1$ for all $x,y \in \mathbb{Q}$. Determine $f$.
1974 Miklós Schweitzer, 8
Prove that there exists a topological space $ T$ containing the real line as a subset, such that the Lebesgue-measurable functions, and only those, extend continuously over $ T$. Show that the real line cannot be an everywhere-dense subset of such a space $ T$.
[i]A. Csaszar[/i]
2020 Miklós Schweitzer, 11
Given a real number $p>1$, a continuous function $h\colon [0,\infty)\to [0,\infty)$, and a smooth vector field $Y\colon \mathbb{R}^n \to \mathbb{R}^n$ with $\mathrm{div}~Y=0$, prove the following inequality
\[\int_{\mathbb{R}^n}h(|x|)|x|^{p}\leq \int_{\mathbb{R}^{n}}h(|x|)|x+Y(x)|^{p}.\]
2008 IMO Shortlist, 3
Let $ S\subseteq\mathbb{R}$ be a set of real numbers. We say that a pair $ (f, g)$ of functions from $ S$ into $ S$ is a [i]Spanish Couple[/i] on $ S$, if they satisfy the following conditions:
(i) Both functions are strictly increasing, i.e. $ f(x) < f(y)$ and $ g(x) < g(y)$ for all $ x$, $ y\in S$ with $ x < y$;
(ii) The inequality $ f\left(g\left(g\left(x\right)\right)\right) < g\left(f\left(x\right)\right)$ holds for all $ x\in S$.
Decide whether there exists a Spanish Couple [list][*] on the set $ S \equal{} \mathbb{N}$ of positive integers; [*] on the set $ S \equal{} \{a \minus{} \frac {1}{b}: a, b\in\mathbb{N}\}$[/list]
[i]Proposed by Hans Zantema, Netherlands[/i]
1977 IMO, 3
Let $\mathbb{N}$ be the set of positive integers. Let $f$ be a function defined on $\mathbb{N}$, which satisfies the inequality $f(n + 1) > f(f(n))$ for all $n \in \mathbb{N}$. Prove that for any $n$ we have $f(n) = n.$
2022 European Mathematical Cup, 2
Find all pairs $(x,y)$ of positive real numbers such that $xy$ is an integer and $x+y = \lfloor x^2 - y^2 \rfloor$.
2006 MOP Homework, 2
Find all functions $f:\mathbb{R}\rightarrow \mathbb{R}$ satisfying
\[f(x+f(y))=x+f(f(y))\]
for all real numbers $x$ and $y$, with the additional constraint $f(2004)=2005$.
2012 Today's Calculation Of Integral, 815
Prove that : $\left|\sum_{i=0}^n \left(1-\pi \sin \frac{i\pi}{4n}\cos \frac{i\pi}{4n}\right)\right|<1.$
2007 VJIMC, Problem 4
Let $f:[0,1]\to[0,\infty)$ be an arbitrary function satisfying
$$\frac{f(x)+f(y)}2\le f\left(\frac{x+y}2\right)+1$$
for all pairs $x,y\in[0,1]$. Prove that for all $0\le u<v<w\le1$,
$$\frac{w-v}{w-u}f(u)+\frac{v-u}{w-u}f(w)\le f(v)+2.$$
PEN H Problems, 16
Find all pairs $(a,b)$ of different positive integers that satisfy the equation $W(a)=W(b)$, where $W(x)=x^{4}-3x^{3}+5x^{2}-9x$.
2017 ISI Entrance Examination, 3
Suppose $f:\mathbb{R} \to \mathbb{R}$ is a function given by
$$f(x) =\begin{cases} 1 & \mbox{if} \ x=1 \\ e^{(x^{10}-1)}+(x-1)^2\sin\frac1{x-1} & \mbox{if} \ x\neq 1\end{cases}$$
(a) Find $f'(1)$
(b) Evaluate $\displaystyle \lim_{u\to\infty} \left[100u-u\sum_{k=1}^{100} f\left(1+\frac{k}{u}\right)\right]$.
1986 IMO Longlists, 61
Given a positive integer $n$, find the greatest integer $p$ with the property that for any function $f : \mathbb P(X) \to C$, where $X$ and $C$ are sets of cardinality $n$ and $p$, respectively, there exist two distinct sets $A,B \in \mathbb P(X)$ such that $f(A) = f(B) = f(A \cup B)$. ($\mathbb P(X)$ is the family of all subsets of $X$.)
2012 India PRMO, 16
Let $N$ be the set of natural numbers. Suppose $f: N \to N$ is a function satisfying the following conditions:
(a) $f(mn) =f(m)f(n)$
(b) $f(m) < f(n)$ if $m < n$
(c) $f(2) = 2$
What is the sum of $\Sigma_{k=1}^{20}f(k)$?
2006 Moldova National Olympiad, 10.2
Let $n$ be a positive integer, $n\geq 2$. Let $M=\{0,1,2,\ldots n-1\}$. For an integer nonzero number $a$ we define the function $f_{a}: M\longrightarrow M$, such that $f_{a}(x)$ is the remainder when dividing $ax$ at $n$. Find a necessary and sufficient condition such that $f_{a}$ is bijective. And if $f_{a}$ is bijective and $n$ is a prime number, prove that $a^{n(n-1)}-1$ is divisible by $n^{2}$.
2001 Greece National Olympiad, 3
A function $f : \Bbb{N}_0 \to \Bbb{R}$ satisfies $f(1) = 3$ and \[f(m + n) + f(m - n) - m + n - 1 =\frac{f(2m) + f(2n)}{2},\]
for any non-negative integers $m$ and $n$ with $m \geq n.$ Find all such functions $f$.
1996 Romania National Olympiad, 4
Let $f:[0,1) \to \mathbb{R}$ be a monotonic function. Prove that the limits [center]$\lim_{x \nearrow 1} \int_0^x f(t) \mathrm{d}t$ and $\lim_{n \to \infty} \frac{1}{n} \left[ f(0) + f \left(\frac{1}{n}\right) + \ldots + f \left( \frac{n-1}{n} \right) \right]$[/center] exist and are equal.
2012 Today's Calculation Of Integral, 843
Let $f(x)$ be a continuous function such that $\int_0^1 f(x)\ dx=1.$ Find $f(x)$ for which $\int_0^1 (x^2+x+1)f(x)^2dx$ is minimized.
2022 Kosovo National Mathematical Olympiad, 2
Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that for all real numbers $x$ and $y$,
$$f(f(x-y)-yf(x))=xf(y).$$
2007 Grigore Moisil Intercounty, 3
Find the natural numbers $ a $ that have the property that there exists a function $ f:\mathbb{N}\longrightarrow\mathbb{N} $ such that $ f(f(n))=a+n, $ for any natural number $ n, $ and the function $ g:\mathbb{N}\longrightarrow\mathbb{N} $ defined as $ g(n)=f(n)-n $ is injective.
2014 Paenza, 6
(a) Show that if $f:[-1,1]\to \mathbb{R}$ is a convex and $C^2$ function such that $f(1),f(-1)\geq 0$, then:
\[\min_{x\in[-1,1]} \{f(x)\} \geq - \int_{-1}^1 f''\]
(b) Let $B\subset \mathbb{R}^2$ the closed ball with center $0$ and radius $1$. Show that if $f: B \to \mathbb{R}$ is a convex and $C^2$ function and $f\geq 0$ in $\partial B$, then:
\[f(0)\geq -\frac{1}{\sqrt{\pi}} \left( \int_{B} (f_{xx}f_{yy}-f_{xy}^2) \right)^{1/2}\]