This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

1987 Bulgaria National Olympiad, Problem 6

Let $\Delta$ be the set of all triangles inscribed in a given circle, with angles whose measures are integer numbers of degrees different than $45^\circ,90^\circ$ and $135^\circ$. For each triangle $T\in\Delta$, $f(T)$ denotes the triangle with vertices at the second intersection points of the altitudes of $T$ with the circle. (a) Prove that there exists a natural number $n$ such that for every triangle $T\in\Delta$, among the triangles $T,f(T),\ldots,f^n(T)$ (where $f^0(T)=T$ and $f^k(T)=f(f^{k-1}(T))$) at least two are equal. (b) Find the smallest $n$ with the property from (a).

2021 Caucasus Mathematical Olympiad, 8

An infinite table whose rows and columns are numbered with positive integers, is given. For a sequence of functions $f_1(x), f_2(x), \ldots $ let us place the number $f_i(j)$ into the cell $(i,j)$ of the table (for all $i, j\in \mathbb{N}$). A sequence $f_1(x), f_2(x), \ldots $ is said to be {\it nice}, if all the numbers in the table are positive integers, and each positive integer appears exactly once. Determine if there exists a nice sequence of functions $f_1(x), f_2(x), \ldots $, such that each $f_i(x)$ is a polynomial of degree 101 with integer coefficients and its leading coefficient equals to 1.

1972 IMO Longlists, 35

$(a)$ Prove that for $a, b, c, d \in\mathbb{R}, m \in [1,+\infty)$ with $am + b =-cm + d = m$, \[(i)\sqrt{a^2 + b^2}+\sqrt{c^2 + d^2}+\sqrt{(a-c)^2 + (b-d)^2}\ge \frac{4m^2}{1+m^2},\text{ and}\] \[(ii) 2 \le \frac{4m^2}{1+m^2} < 4.\] $(b)$ Express $a, b, c, d$ as functions of $m$ so that there is equality in $(i).$

2010 Balkan MO, 4

For each integer $n$ ($n \ge 2$), let $f(n)$ denote the sum of all positive integers that are at most $n$ and not relatively prime to $n$. Prove that $f(n+p) \neq f(n)$ for each such $n$ and every prime $p$.

1965 Miklós Schweitzer, 9

Let $ f$ be a continuous, nonconstant, real function, and assume the existence of an $ F$ such that $ f(x\plus{}y)\equal{}F[f(x),f(y)]$ for all real $ x$ and $ y$. Prove that $ f$ is strictly monotone.

2013 District Olympiad, 4

Let$f:\mathbb{R}\to \mathbb{R}$be a monotone function. a) Prove that$f$ have side limits in each point ${{x}_{0}}\in \mathbb{R}$. b) We define the function $g:\mathbb{R}\to \mathbb{R}$, $g\left( x \right)=\underset{t\nearrow x}{\mathop{\lim }}\,f\left( t \right)$( $g\left( x \right)$ with limit at at left in $x$). Prove that if the $g$ function is continuous, than the function $f$ is continuous.

2009 Brazil Team Selection Test, 3

Let $ S\subseteq\mathbb{R}$ be a set of real numbers. We say that a pair $ (f, g)$ of functions from $ S$ into $ S$ is a [i]Spanish Couple[/i] on $ S$, if they satisfy the following conditions: (i) Both functions are strictly increasing, i.e. $ f(x) < f(y)$ and $ g(x) < g(y)$ for all $ x$, $ y\in S$ with $ x < y$; (ii) The inequality $ f\left(g\left(g\left(x\right)\right)\right) < g\left(f\left(x\right)\right)$ holds for all $ x\in S$. Decide whether there exists a Spanish Couple [list][*] on the set $ S \equal{} \mathbb{N}$ of positive integers; [*] on the set $ S \equal{} \{a \minus{} \frac {1}{b}: a, b\in\mathbb{N}\}$[/list] [i]Proposed by Hans Zantema, Netherlands[/i]

1958 AMC 12/AHSME, 46

For values of $ x$ less than $ 1$ but greater than $ \minus{}4$, the expression \[ \frac{x^2 \minus{} 2x \plus{} 2}{2x \minus{} 2} \] has: $ \textbf{(A)}\ \text{no maximum or minimum value}\qquad \\ \textbf{(B)}\ \text{a minimum value of }{\plus{}1}\qquad \\ \textbf{(C)}\ \text{a maximum value of }{\plus{}1}\qquad \\ \textbf{(D)}\ \text{a minimum value of }{\minus{}1}\qquad \\ \textbf{(E)}\ \text{a maximum value of }{\minus{}1}$

2024 Romania National Olympiad, 1

Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function such that $f(x)+\sin(f(x)) \ge x,$ for all $x \in \mathbb{R}.$ Prove that $$\int\limits_0^{\pi} f(x) \mathrm{d}x \ge \frac{\pi^2}{2}-2.$$

2011 Math Prize For Girls Problems, 10

There are real numbers $a$ and $b$ such that for every positive number $x$, we have the identity \[ \tan^{-1} \bigl( \frac{1}{x} - \frac{x}{8} \bigr) + \tan^{-1}(ax) + \tan^{-1}(bx) = \frac{\pi}{2} \, . \] (Throughout this equation, $\tan^{-1}$ means the inverse tangent function, sometimes written $\arctan$.) What is the value of $a^2 + b^2$?

2016 Azerbaijan National Mathematical Olympiad, 4

Tags: algebra , function
Let $\mathbb R$ be the set of real numbers. Determine all functions $f:\mathbb R\to\mathbb R$ that satisfy the equation $$\sum_{i=1}^{2015} f(x_i + x_{i+1}) + f\left( \sum_{i=1}^{2016} x_i \right) \le \sum_{i=1}^{2016} f(2x_i)$$ for all real numbers $x_1, x_2, ... , x_{2016}.$

1982 IMO Longlists, 32

The function $f(n)$ is defined on the positive integers and takes non-negative integer values. $f(2)=0,f(3)>0,f(9999)=3333$ and for all $m,n:$ \[ f(m+n)-f(m)-f(n)=0 \text{ or } 1. \] Determine $f(1982)$.

2010 Today's Calculation Of Integral, 545

(1) Evaluate $ \int_0^1 xe^{x^2}dx$. (2) Let $ I_n\equal{}\int_0^1 x^{2n\minus{}1}e^{x^2}dx$. Express $ I_{n\plus{}1}$ in terms of $ I_n$.

2023 India National Olympiad, 3

Let $\mathbb N$ denote the set of all positive integers. Find all real numbers $c$ for which there exists a function $f:\mathbb N\to \mathbb N$ satisfying: [list] [*] for any $x,a\in\mathbb N$, the quantity $\frac{f(x+a)-f(x)}{a}$ is an integer if and only if $a=1$; [*] for all $x\in \mathbb N$, we have $|f(x)-cx|<2023$. [/list] [i]Proposed by Sutanay Bhattacharya[/i]

2004 Bulgaria National Olympiad, 4

In a word formed with the letters $a,b$ we can change some blocks: $aba$ in $b$ and back, $bba$ in $a$ and backwards. If the initial word is $aaa\ldots ab$ where $a$ appears 2003 times can we reach the word $baaa\ldots a$, where $a$ appears 2003 times.

2001 USA Team Selection Test, 2

Express \[ \sum_{k=0}^n (-1)^k (n-k)!(n+k)! \] in closed form.

2016 CCA Math Bonanza, T6

Consider the polynomials $P\left(x\right)=16x^4+40x^3+41x^2+20x+16$ and $Q\left(x\right)=4x^2+5x+2$. If $a$ is a real number, what is the smallest possible value of $\frac{P\left(a\right)}{Q\left(a\right)}$? [i]2016 CCA Math Bonanza Team #6[/i]

2007 IMC, 6

Let $ f \ne 0$ be a polynomial with real coefficients. Define the sequence $ f_{0}, f_{1}, f_{2}, \ldots$ of polynomials by $ f_{0}= f$ and $ f_{n+1}= f_{n}+f_{n}'$ for every $ n \ge 0$. Prove that there exists a number $ N$ such that for every $ n \ge N$, all roots of $ f_{n}$ are real.

1990 Romania Team Selection Test, 8

For a set $S$ of $n$ points, let $d_1 > d_2 >... > d_k > ...$ be the distances between the points. A function $f_k: S \to N$ is called a [i]coloring function[/i] if, for any pair $M,N$ of points in $S$ with $MN \le d_k$ , it takes the value $f_k(M)+ f_k(N)$ at some point. Prove that for each $m \in N$ there are positive integers $n,k$ and a set $S$ of $n$ points such that every coloring function $f_k$ of $S$ satisfies $| f_k(S)| \le m$

2013 IMO, 5

Let $\mathbb Q_{>0}$ be the set of all positive rational numbers. Let $f:\mathbb Q_{>0}\to\mathbb R$ be a function satisfying the following three conditions: (i) for all $x,y\in\mathbb Q_{>0}$, we have $f(x)f(y)\geq f(xy)$; (ii) for all $x,y\in\mathbb Q_{>0}$, we have $f(x+y)\geq f(x)+f(y)$; (iii) there exists a rational number $a>1$ such that $f(a)=a$. Prove that $f(x)=x$ for all $x\in\mathbb Q_{>0}$. [i]Proposed by Bulgaria[/i]

1971 Canada National Olympiad, 3

$ABCD$ is a quadrilateral with $AD=BC$. If $\angle ADC$ is greater than $\angle BCD$, prove that $AC>BD$.

2010 Indonesia TST, 3

Let $ \mathbb{Z}$ be the set of all integers. Define the set $ \mathbb{H}$ as follows: (1). $ \dfrac{1}{2} \in \mathbb{H}$, (2). if $ x \in \mathbb{H}$, then $ \dfrac{1}{1\plus{}x} \in \mathbb{H}$ and also $ \dfrac{x}{1\plus{}x} \in \mathbb{H}$. Prove that there exists a bijective function $ f: \mathbb{Z} \rightarrow \mathbb{H}$.

2012 Balkan MO Shortlist, A6

Let $k$ be a positive integer. Find the maximum value of \[a^{3k-1}b+b^{3k-1}c+c^{3k-1}a+k^2a^kb^kc^k,\] where $a$, $b$, $c$ are non-negative reals such that $a+b+c=3k$.

2023 USAJMO Solutions by peace09, 3

Consider an $n$-by-$n$ board of unit squares for some odd positive integer $n$. We say that a collection $C$ of identical dominoes is a [i]maximal grid-aligned configuration[/i] on the board if $C$ consists of $(n^2-1)/2$ dominoes where each domino covers exactly two neighboring squares and the dominoes don't overlap: $C$ then covers all but one square on the board. We are allowed to slide (but not rotate) a domino on the board to cover the uncovered square, resulting in a new maximal grid-aligned configuration with another square uncovered. Let $k(C)$ be the number of distinct maximal grid-aligned configurations obtainable from $C$ by repeatedly sliding dominoes. Find the maximum value of $k(C)$ as a function of $n$. [i]Proposed by Holden Mui[/i]

1959 Putnam, B3

Give an example of a continuous real-valued function $f$ form $[0,1]$ to $[0,1]$ which takes on every value in $[0,1]$ an infinite number of times.