Found problems: 4776
2009 Miklós Schweitzer, 7
Let $ H$ be an arbitrary subgroup of the diffeomorphism group $ \mathsf{Diff}^\infty(M)$ of a differentiable manifold $ M$. We say that an $ \mathcal C^\infty$-vector field $ X$ is [i]weakly tangent[/i] to the group $ H$, if there exists a positive integer $ k$ and a $ \mathcal C^\infty$-differentiable map $ \varphi \mathrel{: } \mathord{]} \minus{} \varepsilon,\varepsilon\mathord{[}^k\times M\to M$ such that
(i) for fixed $ t_1,\dots,t_k$ the map
\[ \varphi_{t_1,\dots,t_k} : x\in M\mapsto \varphi(t_1,\dots,t_k,x)\]
is a diffeomorphism of $ M$, and $ \varphi_{t_1,\dots,t_k}\in H$;
(ii) $ \varphi_{t_1,\dots,t_k}\in H \equal{} \mathsf{Id}$ whenever $ t_j \equal{} 0$ for some $ 1\leq j\leq k$;
(iii) for any $ \mathcal C^\infty$-function $ f: M\to \mathbb R$
\[ X f \equal{} \left.\frac {\partial^k(f\circ\varphi_{t_1,\dots,t_k})}{\partial t_1\dots\partial t_k}\right|_{(t_1,\dots,t_k) \equal{} (0,\dots,0)}.\]
Prove, that the commutators of $ \mathcal C^\infty$-vector fields that are weakly tangent to $ H\subset \textsf{Diff}^\infty(M)$ are also weakly tangent to $ H$.
2007 Today's Calculation Of Integral, 201
Evaluate the following definite integral.
\[\int_{-1}^{1}\frac{e^{2x}+1-(x+1)(e^{x}+e^{-x})}{x(e^{x}-1)}dx\]
1946 Putnam, A4
Let $g(x)$ be a function that has a continuous first derivative $g'(x)$. Suppose that $g(0)=0$ and $|g'(x)| \leq |g(x)|$ for all values of $x.$ Prove that $g(x)$ vanishes identically.
2024 CIIM, 1
Let $(a_n)_{n \geq 1}$ be a sequence of real numbers. We define a sequence of real functions $(f_n)_{n \geq 0}$ such that for all $x \in \mathbb{R}$, the following holds:
\[
f_0(x) = 1 \quad \text{and} \quad f_n(x) = \int_{a_n}^{x} f_{n-1}(t) \, dt \quad \text{for } n \geq 1.
\]
Find all possible sequences $(a_n)_{n \geq 1}$ such that $f_n(0) = 0$ for all $n \geq 2$.\\
[b]Note:[/b] It is not necessarily true that $f_1(0) = 0$.
2016 IMC, 4
Let $k$ be a positive integer. For each nonnegative integer $n$, let $f(n)$ be the number of solutions $(x_1,\ldots,x_k)\in\mathbb{Z}^k$ of the inequality $|x_1|+...+|x_k|\leq n$. Prove that for every $n\ge1$, we have $f(n-1)f(n+1)\leq f(n)^2$.
(Proposed by Esteban Arreaga, Renan Finder and José Madrid, IMPA, Rio de Janeiro)
2007 AMC 12/AHSME, 17
Suppose that $ \sin a \plus{} \sin b \equal{} \sqrt {\frac {5}{3}}$ and $ \cos a \plus{} \cos b \equal{} 1.$ What is $ \cos(a \minus{} b)?$
$ \textbf{(A)}\ \sqrt {\frac {5}{3}} \minus{} 1 \qquad \textbf{(B)}\ \frac {1}{3}\qquad \textbf{(C)}\ \frac {1}{2}\qquad \textbf{(D)}\ \frac {2}{3}\qquad \textbf{(E)}\ 1$
2021 China Second Round Olympiad, Problem 5
Define the regions $M, N$ in the Cartesian Plane as follows:
\begin{align*}
M &= \{(x, y) \in \mathbb R^2 \mid 0 \leq y \leq \text{min}(2x, 3-x)\} \\
N &= \{(x, y) \in \mathbb R^2 \mid t \leq x \leq t+2 \}
\end{align*}
for some real number $t$. Denote the common area of $M$ and $N$ for some $t$ be $f(t)$. Compute the algebraic form of the function $f(t)$ for $0 \leq t \leq 1$.
[i](Source: China National High School Mathematics League 2021, Zhejiang Province, Problem 5)[/i]
2007 ITest, 14
Let $\phi(n)$ be the number of positive integers $k<n$ which are relatively prime to $n$. For how many distinct values of $n$ is $\phi(n)$ equal to $12$?
$\textbf{(A) }0\hspace{14em}\textbf{(B) }1\hspace{14em}\textbf{(C) }2$
$\textbf{(D) }3\hspace{14em}\textbf{(E) }4\hspace{14em}\textbf{(F) }5$
$\textbf{(G) }6\hspace{14em}\textbf{(H) }7\hspace{14em}\textbf{(I) }8$
$\textbf{(J) }9\hspace{14.2em}\textbf{(K) }10\hspace{13.5em}\textbf{(L) }11$
$\textbf{(M) }12\hspace{13.3em}\textbf{(N) }13$
2012 Pre-Preparation Course Examination, 1
Suppose that $X$ and $Y$ are two metric spaces and $f:X \longrightarrow Y$ is a continious function. Also for every compact set $K \subseteq Y$, it's pre-image $f^{pre}(K)$ is a compact set in $X$. Prove that $f$ is a closed function, i.e for every close set $C\subseteq X$, it's image $f(C)$ is a closed subset of $Y$.
2019 Belarusian National Olympiad, 11.7
Find all functions $f:\mathbb R\to\mathbb R$ satisfying the equality
$$
f(f(x)+f(y))=(x+y)f(x+y)
$$
for all real $x$ and $y$.
[i](B. Serankou)[/i]
2012 ELMO Shortlist, 6
Consider a directed graph $G$ with $n$ vertices, where $1$-cycles and $2$-cycles are permitted. For any set $S$ of vertices, let $N^{+}(S)$ denote the out-neighborhood of $S$ (i.e. set of successors of $S$), and define $(N^{+})^k(S)=N^{+}((N^{+})^{k-1}(S))$ for $k\ge2$.
For fixed $n$, let $f(n)$ denote the maximum possible number of distinct sets of vertices in $\{(N^{+})^k(X)\}_{k=1}^{\infty}$, where $X$ is some subset of $V(G)$. Show that there exists $n>2012$ such that $f(n)<1.0001^n$.
[i]Linus Hamilton.[/i]
1991 Arnold's Trivium, 4
Calculate the $100$th derivative of the function
\[\frac{x^2+1}{x^3-x}\]
2023 Germany Team Selection Test, 2
Let $m,n \geqslant 2$ be integers, let $X$ be a set with $n$ elements, and let $X_1,X_2,\ldots,X_m$ be pairwise distinct non-empty, not necessary disjoint subset of $X$. A function $f \colon X \to \{1,2,\ldots,n+1\}$ is called [i]nice[/i] if there exists an index $k$ such that \[\sum_{x \in X_k} f(x)>\sum_{x \in X_i} f(x) \quad \text{for all } i \ne k.\] Prove that the number of nice functions is at least $n^n$.
2008 AMC 12/AHSME, 19
In the expansion of
\[ \left(1 \plus{} x \plus{} x^2 \plus{} \cdots \plus{} x^{27}\right)\left(1 \plus{} x \plus{} x^2 \plus{} \cdots \plus{} x^{14}\right)^2,
\]what is the coefficient of $ x^{28}$?
$ \textbf{(A)}\ 195 \qquad \textbf{(B)}\ 196 \qquad \textbf{(C)}\ 224 \qquad \textbf{(D)}\ 378 \qquad \textbf{(E)}\ 405$
2004 IberoAmerican, 3
Let $ n$ and $ k$ be positive integers such as either $ n$ is odd or both $ n$ and $ k$ are even. Prove that exists integers $ a$ and $ b$ such as $ GCD(a,n) \equal{} GCD(b,n) \equal{} 1$ and $ k \equal{} a \plus{} b$
2009 All-Russian Olympiad, 2
Consider the sequence of numbers $(a_n)$ ($n = 1, 2, \ldots$) defined as follows: $ a_1\in (1, 2)$, $ a_{k + 1} = a_k + \frac{k}{a_k}$ ($k = 1, 2, \ldots$). Prove that there exists at most one pair of distinct positive integers $(i, j)$ such that $a_i + a_j$ is an integer.
2000 USA Team Selection Test, 4
Let $n$ be a positive integer. Prove that
\[ \binom{n}{0}^{-1} + \binom{n}{1}^{-1} + \cdots + \binom{n}{n}^{-1} = \frac{n+1}{2^{n+1}} \left( \frac{2}{1} + \frac{2^2}{2} + \cdots + \frac{2^{n+1}}{n+1} \right). \]
2025 Romania National Olympiad, 2
Let $f \colon [0,1] \to \mathbb{R} $ be a differentiable function such that its derivative is an integrable function on $[0,1]$, and $f(1)=0$. Prove that \[ \int_0^1 (xf'(x))^2 dx \geq 12 \cdot \left( \int_0^1 xf(x) dx\right)^2 \]
2010 AIME Problems, 14
For each positive integer n, let $ f(n) \equal{} \sum_{k \equal{} 1}^{100} \lfloor \log_{10} (kn) \rfloor$. Find the largest value of n for which $ f(n) \le 300$.
[b]Note:[/b] $ \lfloor x \rfloor$ is the greatest integer less than or equal to $ x$.
2007 ISI B.Stat Entrance Exam, 6
Let $S=\{1,2,\cdots ,n\}$ where $n$ is an odd integer. Let $f$ be a function defined on $\{(i,j): i\in S, j \in S\}$ taking values in $S$ such that
(i) $f(s,r)=f(r,s)$ for all $r,s \in S$
(ii) $\{f(r,s): s\in S\}=S$ for all $r\in S$
Show that $\{f(r,r): r\in S\}=S$
2004 China Team Selection Test, 1
Given non-zero reals $ a$, $ b$, find all functions $ f: \mathbb{R} \longmapsto \mathbb{R}$, such that for every $ x, y \in \mathbb{R}$, $ y \neq 0$, $ f(2x) \equal{} af(x) \plus{} bx$ and $ \displaystyle f(x)f(y) \equal{} f(xy) \plus{} f \left( \frac {x}{y} \right)$.
2018 Indonesia Juniors, day 1
The problems are really difficult to find online, so here are the problems.
P1. It is known that two positive integers $m$ and $n$ satisfy $10n - 9m = 7$ dan $m \leq 2018$. The number $k = 20 - \frac{18m}{n}$ is a fraction in its simplest form.
a) Determine the smallest possible value of $k$.
b) If the denominator of the smallest value of $k$ is (equal to some number) $N$, determine all positive factors of $N$.
c) On taking one factor out of all the mentioned positive factors of $N$ above (specifically in problem b), determine the probability of taking a factor who is a multiple of 4.
I added this because my translation is a bit weird.
[hide=Indonesian Version] Diketahui dua bilangan bulat positif $m$ dan $n$ dengan $10n - 9m = 7$ dan $m \leq 2018$. Bilangan $k = 20 - \frac{18m}{n}$ merupakan suatu pecahan sederhana.
a) Tentukan bilangan $k$ terkecil yang mungkin.
b) Jika penyebut bilangan $k$ terkecil tersebut adalah $N$, tentukan semua faktor positif dari $N$.
c) Pada pengambilan satu faktor dari faktor-faktor positif $N$ di atas, tentukan peluang terambilnya satu faktor kelipatan 4.[/hide]
P2. Let the functions $f, g : \mathbb{R} \to \mathbb{R}$ be given in the following graphs.
[hide=Graph Construction Notes]I do not know asymptote, can you please help me draw the graphs? Here are its complete description:
For both graphs, draw only the X and Y-axes, do not draw grids. Denote each axis with $X$ or $Y$ depending on which line you are referring to, and on their intercepts, draw a small node (a circle) then mark their $X$ or $Y$ coordinates only (since their other coordinates are definitely 0).
Graph (1) is the function $f$, who is a quadratic function with -2 and 4 as its $X$-intercepts and 4 as its $Y$-intercept. You also put $f$ right besides the curve you have, preferably just on the right-up direction of said curve.
Graph (2) is the function $g$, which is piecewise. For $x \geq 0$, $g(x) = \frac{1}{2}x - 2$, whereas for $x < 0$, $g(x) = - x - 2$. You also put $g$ right besides the curve you have, on the lower right of the line, on approximately $x = 2$.[/hide]
Define the function $g \circ f$ with $(g \circ f)(x) = g(f(x))$ for all $x \in D_f$ where $D_f$ is the domain of $f$.
a) Draw the graph of the function $g \circ f$.
b) Determine all values of $x$ so that $-\frac{1}{2} \leq (g \circ f)(x) \leq 6$.
P3. The quadrilateral $ABCD$ has side lengths $AB = BC = 4\sqrt{3}$ cm and $CD = DA = 4$ cm. All four of its vertices lie on a circle. Calculate the area of quadrilateral $ABCD$.
P4. There exists positive integers $x$ and $y$, with $x < 100$ and $y > 9$. It is known that $y = \frac{p}{777} x$, where $p$ is a 3-digit number whose number in its tens place is 5. Determine the number/quantity of all possible values of $y$.
P5. The 8-digit number $\overline{abcdefgh}$ (the original problem does not have an overline, which I fixed) is arranged from the set $\{1, 2, 3, 4, 5, 6, 7, 8\}$. Such number satisfies $a + c + e + g \geq b + d + f + h$. Determine the quantity of different possible (such) numbers.
2014 IMO Shortlist, A2
Define the function $f:(0,1)\to (0,1)$ by \[\displaystyle f(x) = \left\{ \begin{array}{lr} x+\frac 12 & \text{if}\ \ x < \frac 12\\ x^2 & \text{if}\ \ x \ge \frac 12 \end{array} \right.\] Let $a$ and $b$ be two real numbers such that $0 < a < b < 1$. We define the sequences $a_n$ and $b_n$ by $a_0 = a, b_0 = b$, and $a_n = f( a_{n -1})$, $b_n = f (b_{n -1} )$ for $n > 0$. Show that there exists a positive integer $n$ such that \[(a_n - a_{n-1})(b_n-b_{n-1})<0.\]
[i]Proposed by Denmark[/i]
2006 Iran MO (3rd Round), 1
$n$ is a natural number. $d$ is the least natural number that for each $a$ that $gcd(a,n)=1$ we know $a^{d}\equiv1\pmod{n}$. Prove that there exist a natural number that $\mbox{ord}_{n}b=d$
2010 Iran MO (3rd Round), 7
[b]interesting function[/b]
$S$ is a set with $n$ elements and $P(S)$ is the set of all subsets of $S$ and
$f : P(S) \rightarrow \mathbb N$
is a function with these properties:
for every subset $A$ of $S$ we have $f(A)=f(S-A)$.
for every two subsets of $S$ like $A$ and $B$ we have
$max(f(A),f(B))\ge f(A\cup B)$
prove that number of natural numbers like $x$ such that there exists $A\subseteq S$ and $f(A)=x$ is less than $n$.
time allowed for this question was 1 hours and 30 minutes.