This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2013 Saudi Arabia BMO TST, 4

Let $f : Z_{\ge 0} \to Z_{\ge 0}$ be a function which satisfies for all integer $n \ge 0$: (a) $f(2n + 1)^2 - f(2n)^2 = 6f(n) + 1$, (b) $f(2n) \ge f(n)$ where $Z_{\ge 0}$ is the set of nonnegative integers. Solve the equation $f(n) = 1000$

2014 Singapore Senior Math Olympiad, 10

Tags: function
If $f(x)=\frac{1}{x}-\frac{4}{\sqrt{x}}+3$ where $\frac{1}{16}\le x\le 1$, find the range of $f(x)$. $ \textbf{(A) }-2\le f(x)\le 4 \qquad\textbf{(B) }-1\le f(x)\le 3\qquad\textbf{(C) }0\le f(x)\le 3\qquad\textbf{(D) }-1\le f(x)\le 4\qquad\textbf{(E) }\text{None of the above} $

2006 Victor Vâlcovici, 2

Let be a differentiable function $ f:[0,1]\longrightarrow\mathbb{R} $ whose derivative has a positive Lipschitz constant $ L. $ Show that [b]a)[/b] $ x,y\in [0,1]\implies | f(x)-f(y)-f'(y)(x-y) |\le L\cdot (x-y)^2 $ [b]b)[/b] $ \lim_{n\to\infty } \left( n\int_0^1 f(x)dx-\sum_{i=1}^nf\left( \frac{2i-1}{2n} \right) \right) =0. $

2013 Uzbekistan National Olympiad, 3

Tags: function , algebra
Find all functions $f:Q\rightarrow Q$ such that \[ f(x+y)+f(y+z)+f(z+t)+f(t+x)+f(x+z)+f(y+t)\ge 6f(x-3y+5z+7t) \] for all $x,y,z,t\in Q.$

2004 Vietnam Team Selection Test, 3

In the plane, there are two circles $\Gamma_1, \Gamma_2$ intersecting each other at two points $A$ and $B$. Tangents of $\Gamma_1$ at $A$ and $B$ meet each other at $K$. Let us consider an arbitrary point $M$ (which is different of $A$ and $B$) on $\Gamma_1$. The line $MA$ meets $\Gamma_2$ again at $P$. The line $MK$ meets $\Gamma_1$ again at $C$. The line $CA$ meets $\Gamma_2 $ again at $Q$. Show that the midpoint of $PQ$ lies on the line $MC$ and the line $PQ$ passes through a fixed point when $M$ moves on $\Gamma_1$. [color=red][Moderator edit: This problem was also discussed on http://www.mathlinks.ro/Forum/viewtopic.php?t=21414 .][/color]

2014 District Olympiad, 2

[list=a] [*]Let $f\colon\mathbb{R}\rightarrow\mathbb{R}$ be a function such that $g\colon\mathbb{R}\rightarrow\mathbb{R}$, $g(x)=f(x)+f(2x)$, and $h\colon\mathbb{R}\rightarrow\mathbb{R}$, $h(x)=f(x)+f(4x)$, are continuous functions. Prove that $f$ is also continuous. [*]Give an example of a discontinuous function $f\colon\mathbb{R} \rightarrow\mathbb{R}$, with the following property: there exists an interval $I\subset\mathbb{R}$, such that, for any $a$ in $I$, the function $g_{a} \colon\mathbb{R}\rightarrow\mathbb{R}$, $g_{a}(x)=f(x)+f(ax)$, is continuous.[/list]

2011 Iran Team Selection Test, 5

Tags: function , algebra
Find all surjective functions $f: \mathbb R \to \mathbb R$ such that for every $x,y\in \mathbb R,$ we have \[f(x+f(x)+2f(y))=f(2x)+f(2y).\]

1977 IMO Longlists, 24

Determine all real functions $f(x)$ that are defined and continuous on the interval $(-1, 1)$ and that satisfy the functional equation \[f(x+y)=\frac{f(x)+f(y)}{1-f(x) f(y)} \qquad (x, y, x + y \in (-1, 1)).\]

2022 Korea Junior Math Olympiad, 4

Find all function $f:\mathbb{N} \longrightarrow \mathbb{N}$ such that forall positive integers $x$ and $y$, $\frac{f(x+y)-f(x)}{f(y)}$ is again a positive integer not exceeding $2022^{2022}$.

2024 ISI Entrance UGB, P4

Tags: calculus , limit , function
Let $f: \mathbb R \to \mathbb R$ be a function which is differentiable at $0$. Define another function $g: \mathbb R \to \mathbb R$ as follows: $$g(x) = \begin{cases} f(x)\sin\left(\frac 1x\right) ~ &\text{if} ~ x \neq 0 \\ 0 &\text{if} ~ x = 0. \end{cases}$$ Suppose that $g$ is also differentiable at $0$. Prove that \[g'(0) = f'(0) = f(0) = g(0) = 0.\]

2020 Iran MO (3rd Round), 3

Find all functions $f$ from positive integers to themselves, such that the followings hold. $1)$.for each positive integer $n$ we have $f(n)<f(n+1)<f(n)+2020$. $2)$.for each positive integer $n$ we have $S(f(n))=f(S(n))$ where $S(n)$ is the sum of digits of $n$ in base $10$ representation.

2013 Gheorghe Vranceanu, 1

Find the pairs of functions $ f,g:\mathbb{R}\longrightarrow\mathbb{R} $ with $ f $ continuous, $ g $ differentiable and satisfying: $$ -\sin g(x) + \int \cos f(x)dx =\cos g(x) +\int \sin f(x)dx $$

2005 Germany Team Selection Test, 1

Find all monotonically increasing or monotonically decreasing functions $f: \mathbb{R}_+\to\mathbb{R}_+$ which satisfy the equation $f\left(xy\right)\cdot f\left(\frac{f\left(y\right)}{x}\right)=1$ for any two numbers $x$ and $y$ from $\mathbb{R}_+$. Hereby, $\mathbb{R}_+$ is the set of all positive real numbers. [i]Note.[/i] A function $f: \mathbb{R}_+\to\mathbb{R}_+$ is called [i]monotonically increasing[/i] if for any two positive numbers $x$ and $y$ such that $x\geq y$, we have $f\left(x\right)\geq f\left(y\right)$. A function $f: \mathbb{R}_+\to\mathbb{R}_+$ is called [i]monotonically decreasing[/i] if for any two positive numbers $x$ and $y$ such that $x\geq y$, we have $f\left(x\right)\leq f\left(y\right)$.

2005 Iran Team Selection Test, 3

Suppose $S= \{1,2,\dots,n\}$ and $n \geq 3$. There is $f:S^k \longmapsto S$ that if $a,b \in S^k$ and $a$ and $b$ differ in all of elements then $f(a) \neq f(b)$. Prove that $f$ is a function of one of its elements.

2005 AIME Problems, 6

Let $P$ be the product of the nonreal roots of $x^4-4x^3+6x^2-4x=2005$. Find $\lfloor P\rfloor$.

2003 India Regional Mathematical Olympiad, 4

Find the number of ordered triples $(x,y,z)$ of non-negative integers satisfying (i) $x \leq y \leq z$ (ii) $x + y + z \leq 100.$

Gheorghe Țițeica 2025, P2

Let $f:[0,1]\rightarrow\mathbb{R}$ be a continuous function. Prove that $$\int_0^{\pi/2}f(\sin(2x))\sin x\, dx = \int_0^{\pi/2} f(\cos^2 x)\cos x\, dx.$$

2005 Hong kong National Olympiad, 4

Let $a,b,c,d$ be positive real numbers such that $a+b+c+d=1$. Prove that\[ 6(a^3+b^3+c^3+d^3)\ge(a^2+b^2+c^2+d^2)+\frac{1}{8} \]

2018 Ramnicean Hope, 1

Let be two nonzero real numbers $ a,b $ such that $ |a|\neq |b| $ and let $ f:\mathbb{R}\longrightarrow\mathbb{R} $ be a function satisfying the functional relation $$ af(x)+bf(-x)=(x^3+x)^5+\sin^5 x . $$ Calculate $ \int_{-2019}^{2019}f(x)dx . $ [i]Constantin Rusu[/i]

2012 ELMO Shortlist, 9

Let $a,b,c$ be distinct positive real numbers, and let $k$ be a positive integer greater than $3$. Show that \[\left\lvert\frac{a^{k+1}(b-c)+b^{k+1}(c-a)+c^{k+1}(a-b)}{a^k(b-c)+b^k(c-a)+c^k(a-b)}\right\rvert\ge \frac{k+1}{3(k-1)}(a+b+c)\] and \[\left\lvert\frac{a^{k+2}(b-c)+b^{k+2}(c-a)+c^{k+2}(a-b)}{a^k(b-c)+b^k(c-a)+c^k(a-b)}\right\rvert\ge \frac{(k+1)(k+2)}{3k(k-1)}(a^2+b^2+c^2).\] [i]Calvin Deng.[/i]

2010 Contests, 2

For each positive integer $n$, find the largest real number $C_n$ with the following property. Given any $n$ real-valued functions $f_1(x), f_2(x), \cdots, f_n(x)$ defined on the closed interval $0 \le x \le 1$, one can find numbers $x_1, x_2, \cdots x_n$, such that $0 \le x_i \le 1$ satisfying \[|f_1(x_1)+f_2(x_2)+\cdots f_n(x_n)-x_1x_2\cdots x_n| \ge C_n\] [i]Marko Radovanović, Serbia[/i]

2021 Polish MO Finals, 2

Let $n$ be an integer. For pair of integers $0 \leq i,$ $j\leq n$ there exist real number $f(i,j)$ such that: 1) $ f(i,i)=0$ for all integers $0\leq i \leq n$ 2) $0\leq f(i,l) \leq 2\max \{ f(i,j), f(j,k), f(k,l) \}$ for all integers $i$, $j$, $k$, $l$ satisfying $0\leq i\leq j\leq k\leq l\leq n$. Prove that $$f(0,n) \leq 2\sum_{k=1}^{n}f(k-1,k)$$

2007 Moldova National Olympiad, 11.8

The continuous function and twice differentiable function $f: \mathbb{R}\rightarrow\mathbb{R}$ satisfies $2007^{2}\cdot f(x)+f''(x)=0$. Prove that there exist two such real numbers $k$ and $l$ such that $f(x)=l\cdot\sin(2007x)+k\cdot\cos(2007x)$.

1985 IMO Longlists, 66

Let $D$ be the interior of the circle $C$ and let $A \in C$. Show that the function $f : D \to \mathbb R, f(M)=\frac{|MA|}{|MM'|}$ where $M' = AM \cap C$, is strictly convex; i.e., $f(P) <\frac{f(M_1)+f(M_2)}{2}, \forall M_1,M_2 \in D, M_1 \neq M_2$ where $P$ is the midpoint of the segment $M_1M_2.$

2018 Mathematical Talent Reward Programme, SAQ: P 3

Tags: function , algebra
Does there exist any continuous function $ f$ such that $ f(f(x))=-x^{2019}\ \forall\ x \in \mathbb{R}$