This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2021 Iran MO (3rd Round), 3

Tags: algebra , function
Find all functions $f: \mathbb{Q}[x] \to \mathbb{R}$ such that: (a) for all $P, Q \in \mathbb{Q}[x]$, $f(P \circ Q) = f(Q \circ P);$ (b) for all $P, Q \in \mathbb{Q}[x]$ with $PQ \neq 0$, $f(P\cdot Q) = f(P) + f(Q).$ ($P \circ Q$ indicates $P(Q(x))$.)

1991 Arnold's Trivium, 22

Tags: domain , function , algebra
Investigate the boundary of the domain of stability ($\max \text{Re }\lambda_j < 0$) in the space of coefficients of the equation $\dddot{x} + a\ddot{x} + b\dot{x} + cx = 0$.

2005 South East Mathematical Olympiad, 1

Let $a \in \mathbb{R}$ be a parameter. (1) Prove that the curves of $y = x^2 + (a + 2)x - 2a + 1$ pass through a fixed point; also, the vertices of these parabolas all lie on the curve of a certain parabola. (2) If the function $x^2 + (a + 2)x - 2a + 1 = 0$ has two distinct real roots, find the value range of the larger root.

2024 Abelkonkurransen Finale, 1b

Find all functions $f:\mathbb{Z} \to \mathbb{Z}$ such that the numbers \[n, f(n),f(f(n)),\dots,f^{m-1}(n)\] are distinct modulo $m$ for all integers $n,m$ with $m>1$. (Here $f^k$ is defined by $f^0(n)=n$ and $f^{k+1}(n)=f(f^{k}(n))$ for $k \ge 0$.)

1979 IMO Longlists, 9

The real numbers $\alpha_1 , \alpha_2, \alpha_3, \ldots, \alpha_n$ are positive. Let us denote by $h = \frac{n}{1/\alpha_1 + 1/\alpha_2 + \cdots + 1/\alpha_n}$ the harmonic mean, $g=\sqrt[n]{\alpha_1\alpha_2\cdots \alpha_n}$ the geometric mean, and $a=\frac{\alpha_1+\alpha_2+\cdots + \alpha_n}{n}$ the arithmetic mean. Prove that $h \leq g \leq a$, and that each of the equalities implies the other one.

1994 USAMO, 5

Let $\, |U|, \, \sigma(U) \,$ and $\, \pi(U) \,$ denote the number of elements, the sum, and the product, respectively, of a finite set $\, U \,$ of positive integers. (If $\, U \,$ is the empty set, $\, |U| = 0, \, \sigma(U) = 0, \, \pi(U) = 1$.) Let $\, S \,$ be a finite set of positive integers. As usual, let $\, \binom{n}{k} \,$ denote $\, n! \over k! \, (n-k)!$. Prove that \[ \sum_{U \subseteq S} (-1)^{|U|} \binom{m - \sigma(U)}{|S|} = \pi(S) \] for all integers $\, m \geq \sigma(S)$.

2013 ELMO Shortlist, 9

Let $f_0$ be the function from $\mathbb{Z}^2$ to $\{0,1\}$ such that $f_0(0,0)=1$ and $f_0(x,y)=0$ otherwise. For each positive integer $m$, let $f_m(x,y)$ be the remainder when \[ f_{m-1}(x,y) + \sum_{j=-1}^{1} \sum_{k=-1}^{1} f_{m-1}(x+j,y+k) \] is divided by $2$. Finally, for each nonnegative integer $n$, let $a_n$ denote the number of pairs $(x,y)$ such that $f_n(x,y) = 1$. Find a closed form for $a_n$. [i]Proposed by Bobby Shen[/i]

2023 USA EGMO Team Selection Test, 5

Let $\lfloor \bullet \rfloor$ denote the floor function. For nonnegative integers $a$ and $b$, their [i]bitwise xor[/i], denoted $a \oplus b$, is the unique nonnegative integer such that $$ \left \lfloor \frac{a}{2^k} \right \rfloor+ \left\lfloor\frac{b}{2^k} \right\rfloor - \left\lfloor \frac{a\oplus b}{2^k}\right\rfloor$$ is even for every $k \ge 0$. Find all positive integers $a$ such that for any integers $x>y\ge 0$, we have \[ x\oplus ax \neq y \oplus ay. \] [i]Carl Schildkraut[/i]

2004 IMC, 6

For every complex number $z$ different from 0 and 1 we define the following function \[ f(z) := \sum \frac 1 { \log^4 z } \] where the sum is over all branches of the complex logarithm. a) Prove that there are two polynomials $P$ and $Q$ such that $f(z) = \displaystyle \frac {P(z)}{Q(z)} $ for all $z\in\mathbb{C}-\{0,1\}$. b) Prove that for all $z\in \mathbb{C}-\{0,1\}$ we have \[ f(z) = \frac { z^3+4z^2+z}{6(z-1)^4}. \]

2012 AIME Problems, 9

Let $x$ and $y$ be real numbers such that $\frac{\sin{x}}{\sin{y}} = 3$ and $\frac{\cos{x}}{\cos{y}} = \frac{1}{2}$. The value of $\frac{\sin{2x}}{\sin{2y}} + \frac{\cos{2x}}{\cos{2y}}$ can be expressed in the form $\frac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p + q$.

2022 Romania National Olympiad, P3

Tags: function , algebra
Determine all functions $f:\mathbb{R}\to\mathbb{R}$ for which there exists a function $g:\mathbb{R}\to\mathbb{R}$ such that $f(x)+f(y)=\lfloor g(x+y)\rfloor$ for all real numbers $x$ and $y$. [i]Emil Vasile[/i]

2007 Today's Calculation Of Integral, 216

Let $ a_{n}$ is a positive number such that $ \int_{0}^{a_{n}}\frac{e^{x}\minus{}1}{1\plus{}e^{x}}\ dx \equal{}\ln n$. Find $ \lim_{n\to\infty}(a_{n}\minus{}\ln n)$.

Dumbest FE I ever created, 4.

Tags: algebra , function
Find all $f: \mathbb{R} \to \mathbb{Z^+}$ such that $$f(x+f(y))=f(x)+f(y)+1\quad\text{ or }\quad f(x)+f(y)-1$$ for all real number $x$ and $y$

1996 Spain Mathematical Olympiad, 3

Consider the functions $ f(x) = ax^{2} + bx + c $ , $ g(x) = cx^{2} + bx + a $, where a, b, c are real numbers. Given that $ |f(-1)| \leq 1 $, $ |f(0)| \leq 1 $, $ |f(1)| \leq 1 $, prove that $ |f(x)| \leq \frac{5}{4} $ and $ |g(x)|  \leq 2 $ for $ -1 \leq  x \leq 1 $.

2011 Today's Calculation Of Integral, 762

Define a function $f_n(x)\ (n=0,\ 1,\ 2,\ \cdots)$ by \[f_0(x)=\sin x,\ f_{n+1}(x)=\int_0^{\frac{\pi}{2}} f_n\prime (t)\sin (x+t)dt.\] (1) Let $f_n(x)=a_n\sin x+b_n\cos x.$ Express $a_{n+1},\ b_{n+1}$ in terms of $a_n,\ b_n.$ (2) Find $\sum_{n=0}^{\infty} f_n\left(\frac{\pi}{4}\right).$

2007 Vietnam Team Selection Test, 4

Tags: function , algebra
Find all continuous functions $f: \mathbb{R}\to\mathbb{R}$ such that for all real $x$ we have \[f(x)=f\left(x^{2}+\frac{x}{3}+\frac{1}{9}\right). \]

2010 Philippine MO, 3

Let $\mathbb{R}^*$ be the set of all real numbers, except $1$. Find all functions $f:\mathbb{R}^* \rightarrow \mathbb{R}$ that satisfy the functional equation $$x+f(x)+2f\left(\frac{x+2009}{x-1}\right)=2010$$.

2012 IMO Shortlist, A7

We say that a function $f:\mathbb{R}^k \rightarrow \mathbb{R}$ is a metapolynomial if, for some positive integers $m$ and $n$, it can be represented in the form \[f(x_1,\cdots , x_k )=\max_{i=1,\cdots , m} \min_{j=1,\cdots , n}P_{i,j}(x_1,\cdots , x_k),\] where $P_{i,j}$ are multivariate polynomials. Prove that the product of two metapolynomials is also a metapolynomial.

2009 China Team Selection Test, 3

Tags: algebra , function
Consider function $ f: R\to R$ which satisfies the conditions for any mutually distinct real numbers $ a,b,c,d$ satisfying $ \frac {a \minus{} b}{b \minus{} c} \plus{} \frac {a \minus{} d}{d \minus{} c} \equal{} 0$, $ f(a),f(b),f(c),f(d)$ are mutully different and $ \frac {f(a) \minus{} f(b)}{f(b) \minus{} f(c)} \plus{} \frac {f(a) \minus{} f(d)}{f(d) \minus{} f(c)} \equal{} 0.$ Prove that function $ f$ is linear

MathLinks Contest 4th, 6.2

Let $P$ be the set of points in the plane, and let $f : P \to P$ be a function such that the image through $f$ of any triangle is a square (any polygon is considered to be formed by the reunion of the points on its sides). Prove that $f(P)$ is a square.

2018 China Team Selection Test, 6

Let $M,a,b,r$ be non-negative integers with $a,r\ge 2$, and suppose there exists a function $f:\mathbb{Z}\rightarrow\mathbb{Z}$ satisfying the following conditions: (1) For all $n\in \mathbb{Z}$, $f^{(r)}(n)=an+b$ where $f^{(r)}$ denotes the composition of $r$ copies of $f$ (2) For all $n\ge M$, $f(n)\ge 0$ (3) For all $n>m>M$, $n-m|f(n)-f(m)$ Show that $a$ is a perfect $r$-th power.

2019 Indonesia Juniors, day 1

Actually, this is an MO I participated in :) but it's really hard to get problems from this year if you don't know some people. P1. Let $f$ be a function satisfying $f(x + 1) + f(x - 1) = \sqrt{2} f(x)$, for all reals $x$. If $f(x - 1) = a$ and $f(x) = b$, determine the value of $f(x + 4)$. [hide=Remarks]We found out that this is the modified version of a problem from LMNAS UGM 2008, Senior High School Level, on its First Round. This is also the same with Arthur Engel's "Problem Solving Strategies" Book, Example Problem E2.[/hide] P2. The sequence of "Sanga" numbers is formed by the following procedure. i. Pick a positive integer $n$. ii. The first term of the sequence $(U_1)$ is $9n$. iii. For $k \geq 2$, $U_k = U_{k-1} - 17$. Sanga$[r]$ is the "Sanga" sequence whose smallest positive term is $r$. As an example, for $n = 3$, the "Sanga" sequence which is formed is $27, 10, -7, -24, -41, \ldots.$ Since the smallest positive term of such sequence is $10$, for $n = 3$, the sequence formed is called Sanga$[10]$. For $n \leq 100$, determine the sum of all $n$ which makes the sequence Sanga$[4]$. P3. The cube $ABCD.EFGH$ has an edge length of 6 cm. Point $R$ is on the extension of line (segment) $EH$ with $EH : ER = 1 : 2$, such that triangle $AFR$ cuts edge $GH$ at point $P$ and cuts edge $DH$ at $Q$. Determine the area of the region bounded by the quadrilateral $AFPQ$. [url=https://artofproblemsolving.com/community/q1h2395046p19649729]P4[/url]. Ten skydivers are planning to form a circle formation when they are in the air by holding hands with both adjacent skydivers. If each person has 2 choices for the colour of his/her uniform to be worn, that is, red or white, determine the number of different colour formations that can be constructed. P5. After pressing the start button, a game machine works according to the following procedure. i. It picks 7 numbers randomly from 1 to 9 (these numbers are integers, not stated but corrected) without showing it on screen. ii. It shows the product of the seven chosen numbes on screen. iii. It shows a calculator menu (it does not function as a calculator) on screen and asks the player whether the sum of the seven chosen numbers is odd or even. iv. Shows the seven chosen numbers and their sum and products. v. Releases a prize if the guess of the player was correct or shows the message "Try again" on screen if the guess by the player was incorrect. (Although the player is not allowed to guess with those numbers, and the machine's procedures are started all over again.) Kiki says that this game is really easy since the probability of winning is greater than $90$%. Explain, whether you agree with Kiki.

2020 Kosovo Team Selection Test, 1

Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that, for all real numbers $x$ and $y$ satisfy, $$f\left(x+yf(x+y)\right)=y^2+f(x)f(y)$$ [i]Proposed by Dorlir Ahmeti, Kosovo[/i]

2021 Macedonian Team Selection Test, Problem 5

Determine all functions $f:\mathbb{N}\to \mathbb{N}$ such that for all $a, b \in \mathbb{N}$ the following conditions hold: $(i)$ $f(f(a)+b) \mid b^a-1$; $(ii)$ $f(f(a))\geq f(a)-1$.

1971 Miklós Schweitzer, 9

Given a positive, monotone function $ F(x)$ on $ (0, \infty)$ such that $ F(x)/x$ is monotone nondecreasing and $ F(x)/x^{1+d}$ is monotone nonincreasing for some positive $ d$, let $ \lambda_n >0$ and $ a_n \geq 0 , \;n \geq 1$. Prove that if \[ \sum_{n=1}^{\infty} \lambda_n F \left( a_n \sum _{k=1}^n \frac{\lambda_k}{\lambda_n} \right) < \infty,\] or \[ \sum_{n=1}^{\infty} \lambda_n F \left( \sum _{k=1}^n a_k \frac{\lambda_k}{\lambda_n} \right) < \infty,\] then $ \sum_{n=1}^ {\infty} a_n$ is convergent. [i]L. Leindler[/i]