Found problems: 4776
1999 Harvard-MIT Mathematics Tournament, 4
$f$ is a continuous real-valued function such that $f(x+y)=f(x)f(y)$ for all real $x$, $y$. If $f(2)=5$, find $f(5)$.
2018 Taiwan TST Round 1, 5
Find all functions $ f: \mathbb{N} \to \mathbb{Z} $ satisfying $$ n \mid f\left(m\right) \Longleftrightarrow m \mid \sum\limits_{d \mid n}{f\left(d\right)} $$ holds for all positive integers $ m,n $
2009 Hong Kong TST, 5
Let $ a,b,c$ be the three sides of a triangle. Determine all possible values of $ \frac {a^2 \plus{} b^2 \plus{} c^2}{ab \plus{} bc \plus{} ca}$
2005 China Team Selection Test, 3
Let $\alpha$ be given positive real number, find all the functions $f: N^{+} \rightarrow R$ such that $f(k + m) = f(k) + f(m)$ holds for any positive integers $k$, $m$ satisfying $\alpha m \leq k \leq (\alpha + 1)m$.
2004 Junior Tuymaada Olympiad, 8
Zeroes and ones are arranged in all the squares of $n\times n$ table.
All the squares of the left column are filled by ones, and the sum of numbers in every figure of the form
[asy]size(50); draw((2,1)--(0,1)--(0,2)--(2,2)--(2,0)--(1,0)--(1,2));[/asy]
(consisting of a square and its neighbours from left and from below)
is even.
Prove that no two rows of the table are identical.
[i]Proposed by O. Vanyushina[/i]
PEN O Problems, 1
Suppose all the pairs of a positive integers from a finite collection \[A=\{a_{1}, a_{2}, \cdots \}\] are added together to form a new collection \[A^{*}=\{a_{i}+a_{j}\;\; \vert \; 1 \le i < j \le n \}.\] For example, $A=\{ 2, 3, 4, 7 \}$ would yield $A^{*}=\{ 5, 6, 7, 9, 10, 11 \}$ and $B=\{ 1, 4, 5, 6 \}$ would give $B^{*}=\{ 5, 6, 7, 9, 10, 11 \}$. These examples show that it's possible for different collections $A$ and $B$ to generate the same collections $A^{*}$ and $B^{*}$. Show that if $A^{*}=B^{*}$ for different sets $A$ and $B$, then $|A|=|B|$ and $|A|=|B|$ must be a power of $2$.
2020 Lusophon Mathematical Olympiad, 6
Prove that $\lfloor{\sqrt{9n+7}}\rfloor=\lfloor{\sqrt{n}+\sqrt{n+1}+\sqrt{n+2}}\rfloor$ for all postive integer $n$.
2009 Benelux, 1
Find all functions $f:\mathbb{Z}_{>0}\rightarrow\mathbb{Z}_{>0}$ that satisfy the following two conditions:
[list]$\bullet\ f(n)$ is a perfect square for all $n\in\mathbb{Z}_{>0}$
$\bullet\ f(m+n)=f(m)+f(n)+2mn$ for all $m,n\in\mathbb{Z}_{>0}$.[/list]
1996 Romania Team Selection Test, 11
Find all primes $ p,q $ such that $ \alpha^{3pq} -\alpha \equiv 0 \pmod {3pq} $ for all integers $ \alpha $.
1983 IMO Longlists, 56
Consider the expansion
\[(1 + x + x^2 + x^3 + x^4)^{496} = a_0 + a_1x + \cdots + a_{1984}x^{1984}.\]
[b](a)[/b] Determine the greatest common divisor of the coefficients $a_3, a_8, a_{13}, \ldots , a_{1983}.$
[b](b)[/b] Prove that $10^{340 }< a_{992} < 10^{347}.$
2013 Kosovo National Mathematical Olympiad, 5
A trapezium has parallel sides of length equal to $a$ and $b$ ($a <b$), and the distance between the parallel sides is the altitude $h$. The extensions of the non-parallel lines intersect at a point that is a vertex of two triangles that have as sides the parallel sides of the trapezium. Express the areas of the triangles as functions of $a,b$ and $h$.
2012 Brazil Team Selection Test, 5
Let $ n $ be an integer greater than or equal to $ 2 $. Prove that if the real numbers $ a_1 , a_2 , \cdots , a_n $ satisfy $ a_1 ^2 + a_2 ^2 + \cdots + a_n ^ 2 = n $, then
\[\sum_{1 \le i < j \le n} \frac{1}{n- a_i a_j} \le \frac{n}{2} \]
must hold.
2002 Irish Math Olympiad, 3
Find all functions $ f: \mathbb{Q} \rightarrow \mathbb{Q}$ such that:
$ f(x\plus{}f(y))\equal{}y\plus{}f(x)$ for all $ x,y \in \mathbb{Q}$.
1982 IMO Longlists, 29
Let $f : \mathbb R \to \mathbb R$ be a continuous function. Suppose that the restriction of $f$ to the set of irrational numbers is injective. What can we say about $f$? Answer the analogous question if $f$ is restricted to rationals.
2013 India National Olympiad, 6
Let $a,b,c,x,y,z$ be six positive real numbers satisfying $x+y+z=a+b+c$ and $xyz=abc.$ Further, suppose that $a\leq x<y<z\leq c$ and $a<b<c.$ Prove that $a=x,b=y$ and $c=z.$
2020 Latvia Baltic Way TST, 2
Determine all functions $f:\mathbb R\to\mathbb R$ that satisfy equation:
$$ f(x^3+y^3) =f(x^3) + 3x^2f(x)f(y) + 3f(x)f(y)^2 + y^6f(y) $$
for all reals $x,y$
2006 Stanford Mathematics Tournament, 6
The expression $16^n+4^n+1$ is equiavalent to the expression $(2^{p(n)}-1)/(2^{q(n)}-1)$ for all positive integers $n>1$ where $p(n)$ and $q(n)$ are functions and $\tfrac{p(n)}{q(n)}$ is constant. Find $p(2006)-q(2006)$.
2017 Romania National Olympiad, 2
A function $ f:\mathbb{Q}_{>0}\longrightarrow\mathbb{Q} $ has the following property:
$$ f(xy)=f(x)+f(y),\quad x,y\in\mathbb{Q}_{>0} $$
[b]a)[/b] Demonstrate that there are no injective functions with this property.
[b]b)[/b] Do exist surjective functions having this property?
1991 Arnold's Trivium, 55
Investigate topologically the Riemann surface of the function
\[w=\arctan z\]
1991 Arnold's Trivium, 56
How many handles has the Riemann surface of the function
\[w=\sqrt{1+z^n}\]
1987 Traian Lălescu, 2.2
Let $ f:\mathbb{R}\longrightarrow\mathbb{R} ,f(x)=\left\{\begin{matrix} \sin x , & x\not\in\mathbb{Q} \\ 0, & x\in\mathbb{Q}\end{matrix}\right. . $
[b]a)[/b] Determine the maximum length of an interval $ I\subset\mathbb{R} $ such that $ f|_I $ is discontinuous everywhere, yet has the intermediate value property.
[b]b)[/b] Study the convergence of the sequence $ \left( x_n\right)_{n\in\mathbb{N}\cup\{ 0\}} $ defined by $ x_0\in (0,\pi /2),x_{n+1}=f\left( x_n\right),\forall n\ge 0. $
2022 Romania National Olympiad, P3
Determine all functions $f:\mathbb{R}\to\mathbb{R}$ which are differentiable in $0$ and satisfy the following inequality for all real numbers $x,y$ \[f(x+y)+f(xy)\geq f(x)+f(y).\][i]Dan Ștefan Marinescu and Mihai Piticari[/i]
2008 Harvard-MIT Mathematics Tournament, 5
The function $ f$ satisfies \[f(x) \plus{} f(2x \plus{} y) \plus{} 5xy \equal{} f(3x \minus{} y) \plus{} 2x^2 \plus{} 1\] for all real numbers $ x$, $ y$. Determine the value of $ f(10)$.
2024 Romania National Olympiad, 3
Let $A,B \in \mathcal{M}_n(\mathbb{R}).$ We consider the function $f:\mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C}),$ defined by $f(Z)=AZ+B\overline{Z},$ $Z \in \mathcal{M}_n(\mathbb{C}),$ where $\overline{Z}$ is the matrix whose entries are the conjugates of the corresponding entries of $Z.$ Prove that the following statements are equivalent:
$(1)$ the function $f$ is injective;
$(2)$ the function $f$ is surjective;
$(3)$ the matrices $A+B$ and $A-B$ are invertible.
2008 IMO Shortlist, 6
Let $ f: \mathbb{R}\to\mathbb{N}$ be a function which satisfies $ f\left(x \plus{} \dfrac{1}{f(y)}\right) \equal{} f\left(y \plus{} \dfrac{1}{f(x)}\right)$ for all $ x$, $ y\in\mathbb{R}$. Prove that there is a positive integer which is not a value of $ f$.
[i]Proposed by Žymantas Darbėnas (Zymantas Darbenas), Lithuania[/i]