This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2014 AMC 12/AHSME, 23

The fraction \[\dfrac1{99^2}=0.\overline{b_{n-1}b_{n-2}\ldots b_2b_1b_0},\] where $n$ is the length of the period of the repeating decimal expansion. What is the sum $b_0+b_1+\cdots+b_{n-1}$? $\textbf{(A) }874\qquad \textbf{(B) }883\qquad \textbf{(C) }887\qquad \textbf{(D) }891\qquad \textbf{(E) }892\qquad$

1991 China National Olympiad, 2

Tags: function , algebra
Given $I=[0,1]$ and $G=\{(x,y)|x,y \in I\}$, find all functions $f:G\rightarrow I$, such that $\forall x,y,z \in I$ we have: i. $f(f(x,y),z)=f(x,f(y,z))$; ii. $f(x,1)=x, f(1,y)=y$; iii. $f(zx,zy)=z^kf(x,y)$. ($k$ is a positive real number irrelevant to $x,y,z$.)

2012 India National Olympiad, 1

Let $ABCD$ be a quadrilateral inscribed in a circle. Suppose $AB=\sqrt{2+\sqrt{2}}$ and $AB$ subtends $135$ degrees at center of circle . Find the maximum possible area of $ABCD$.

2002 National High School Mathematics League, 3

Tags: function
Function $f(x)=\frac{x}{1-2^x}-\frac{x}{2}$ is $\text{(A)}$ an even function, not an odd function. $\text{(B)}$ an odd function, not an even function. $\text{(C)}$ an even function, also an odd function. $\text{(D)}$ neither an even function, nor an odd function.

1991 Brazil National Olympiad, 3

Given $k > 0$, the sequence $a_n$ is defined by its first two members and \[ a_{n+2} = a_{n+1} + \frac{k}{n}a_n \] a)For which $k$ can we write $a_n$ as a polynomial in $n$? b) For which $k$ can we write $\frac{a_{n+1}}{a_n} = \frac{p(n)}{q(n)}$? ($p,q$ are polynomials in $\mathbb R[X]$).

2021 USEMO, 5

Given a polynomial $p(x)$ with real coefficients, we denote by $S(p)$ the sum of the squares of its coefficients. For example $S(20x+ 21)=20^2+21^2=841$. Prove that if $f(x)$, $g(x)$, and $h(x)$ are polynomials with real coefficients satisfying the indentity $f(x) \cdot g(x)=h(x)^ 2$, then $$S(f) \cdot S(g) \ge S(h)^2$$ [i]Proposed by Bhavya Tiwari[/i]

2014 USAMO, 1

Let $a$, $b$, $c$, $d$ be real numbers such that $b-d \ge 5$ and all zeros $x_1, x_2, x_3,$ and $x_4$ of the polynomial $P(x)=x^4+ax^3+bx^2+cx+d$ are real. Find the smallest value the product $(x_1^2+1)(x_2^2+1)(x_3^2+1)(x_4^2+1)$ can take.

2009 International Zhautykov Olympiad, 2

Find all real $ a$, such that there exist a function $ f: \mathbb{R}\rightarrow\mathbb{R}$ satisfying the following inequality: \[ x\plus{}af(y)\leq y\plus{}f(f(x)) \] for all $ x,y\in\mathbb{R}$

1993 IMO Shortlist, 9

Let $a,b,c,d$ be four non-negative numbers satisfying \[ a+b+c+d=1. \] Prove the inequality \[ a \cdot b \cdot c + b \cdot c \cdot d + c \cdot d \cdot a + d \cdot a \cdot b \leq \frac{1}{27} + \frac{176}{27} \cdot a \cdot b \cdot c \cdot d. \]

2010 Greece Team Selection Test, 4

Tags: function , algebra
Find all functions $ f:\mathbb{R^{\ast }}\rightarrow \mathbb{ R^{\ast }}$ satisfying $f(\frac{f(x)}{f(y)})=\frac{1}{y}f(f(x))$ for all $x,y\in \mathbb{R^{\ast }}$ and are strictly monotone in $(0,+\infty )$

1999 USAMO, 4

Let $a_{1}, a_{2}, \dots, a_{n}$ ($n > 3$) be real numbers such that \[ a_{1} + a_{2} + \cdots + a_{n} \geq n \qquad \mbox{and} \qquad a_{1}^{2} + a_{2}^{2} + \cdots + a_{n}^{2} \geq n^{2}. \] Prove that $\max(a_{1}, a_{2}, \dots, a_{n}) \geq 2$.

2010 Today's Calculation Of Integral, 656

Find $\lim_{n\to\infty} n\int_0^{\frac{\pi}{2}} \frac{1}{(1+\cos x)^n}dx\ (n=1,\ 2,\ \cdots).$

2024 Durer Math Competition Finals, 4

Tags: function , geometry
Let $\mathcal{H}$ be the set of all lines in the plane. Call a function $f:\mathbb{R}^2\to\mathcal{H}$ [i]polarising[/i], if $P\in f(Q)$ implies $Q\in f(P)$ for any pair of points $P,Q\in\mathbb{R}^2.$ [list=a] [*]Show that there is no surjective polarising function. [*]Give an example of an injective polarising function. [*]Prove that for every injective polarising function there exists a point $P$ in the plane for which $P\in f(P).$ [/list]

2006 Iran MO (3rd Round), 5

A calculating ruler is a ruler for doing algebric calculations. This ruler has three arms, two of them are sationary and one can move freely right and left. Each of arms is gradient. Gradation of each arm depends on the algebric operation ruler does. For eaxample the ruler below is designed for multiplying two numbers. Gradations are logarithmic. [img]http://aycu05.webshots.com/image/5604/2000468517162383885_rs.jpg[/img] For working with ruler, (e.g for calculating $x.y$) we must move the middle arm that the arrow at the beginning of its gradation locate above the $x$ in the lower arm. We find $y$ in the middle arm, and we will read the number on the upper arm. The number written on the ruler is the answer. 1) Design a ruler for calculating $x^{y}$. Grade first arm ($x$) and ($y$) from 1 to 10. 2) Find all rulers that do the multiplication in the interval $[1,10]$. 3) Prove that there is not a ruler for calculating $x^{2}+xy+y^{2}$, that its first and second arm are grade from 0 to 10.

2010 Gheorghe Vranceanu, 2

Let be a natural number $ n, $ a nonzero number $ \alpha, \quad n $ numbers $ a_1,a_2,\ldots ,a_n $ and $ n+1 $ functions $ f_0,f_1,f_2,\ldots ,f_n $ such that $ f_0=\alpha $ and the rest are defined recursively as $$ f_k (x)=a_k+\int_0^x f_{k-1} (x)dx . $$ Prove that if all these functions are everywhere nonnegative, then the sum of all these functions is everywhere nonnegative.

2017 Philippine MO, 1

Given \(n \in \mathbb{N}\), let \(\sigma (n)\) denote the sum of the divisors of \(n\) and \(\phi (n)\) denote the number of integers \(n \geq m\) for which \(\gcd(m,n) = 1\). Show that for all \(n \in \mathbb{N}\), \[\large \frac{1}{\sigma (n)} + \frac{1}{\phi (n)} \geq \frac{2}{n}\] and determine when equality holds.

2006 AMC 12/AHSME, 17

For a particular peculiar pair of dice, the probabilities of rolling 1, 2, 3, 4, 5 and 6 on each die are in the ratio $ 1: 2: 3: 4: 5: 6$. What is the probability of rolling a total of 7 on the two dice? $ \textbf{(A) } \frac 4{63} \qquad \textbf{(B) } \frac 18 \qquad \textbf{(C) } \frac 8{63} \qquad \textbf{(D) } \frac 16 \qquad \textbf{(E) } \frac 27$

1968 Miklós Schweitzer, 3

Let $ K$ be a compact topological group, and let $ F$ be a set of continuous functions defined on $ K$ that has cardinality greater that continuum. Prove that there exist $ x_0 \in K$ and $ f \not\equal{}g \in F$ such that \[ f(x_0)\equal{}g(x_0)\equal{}\max_{x\in K}f(x)\equal{}\max_{x \in K}g(x).\] [i]I. Juhasz[/i]

2013 ELMO Shortlist, 9

Let $f_0$ be the function from $\mathbb{Z}^2$ to $\{0,1\}$ such that $f_0(0,0)=1$ and $f_0(x,y)=0$ otherwise. For each positive integer $m$, let $f_m(x,y)$ be the remainder when \[ f_{m-1}(x,y) + \sum_{j=-1}^{1} \sum_{k=-1}^{1} f_{m-1}(x+j,y+k) \] is divided by $2$. Finally, for each nonnegative integer $n$, let $a_n$ denote the number of pairs $(x,y)$ such that $f_n(x,y) = 1$. Find a closed form for $a_n$. [i]Proposed by Bobby Shen[/i]

2018 Middle European Mathematical Olympiad, 1

Let $Q^+$ denote the set of all positive rational number and let $\alpha\in Q^+.$ Determine all functions $f:Q^+ \to (\alpha,+\infty )$ satisfying $$f(\frac{ x+y}{\alpha}) =\frac{ f(x)+f(y)}{\alpha}$$ for all $x,y\in Q^+ .$

2021 All-Russian Olympiad, 2

Let $P(x)$ be a nonzero polynomial of degree $n>1$ with nonnegative coefficients such that function $y=P(x)$ is odd. Is that possible thet for some pairwise distinct points $A_{1}, A_{2}, \dots A_{n}$ on the graph $G: y = P(x)$ the following conditions hold: tangent to $G$ at $A_{1}$ passes through $A_{2}$, tangent to $G$ at $A_{2}$ passes through $A_{3}$, $\dots$, tangent to $G$ at $A_{n}$ passes through $A_{1}$?

2009 India IMO Training Camp, 6

Prove The Following identity: $ \sum_{j \equal{} 0}^n \left ({3n \plus{} 2 \minus{} j \choose j}2^j \minus{} {3n \plus{} 1 \minus{} j \choose j \minus{} 1}2^{j \minus{} 1}\right ) \equal{} 2^{3n}$. The Second term on left hand side is to be regarded zero for j=0.

2010 CIIM, Problem 4

Let $f:[0,1] \to [0,1]$ a increasing continuous function, diferentiable in $(0,1)$ and with derivative smaller than 1 in every point. The sequence of sets $A_1,A_2,A_3,\dots$ is define as: $A_1 = f([0,1])$, and for $n \geq 2, A_n = f(A_{n-1}).$ Prove that $\displaystyle \lim_{n\to+\infty} d(A_n) = 0$, where $d(A)$ is the diameter of the set $A$. Note: The diameter of a set $X$ is define as $d(X) = \sup_{x,y\in X} |x-y|.$

1998 Estonia National Olympiad, 3

A function $f$ satisfies the conditions $f (x) \ne 0$ and $f (x+2) = f (x-1) f (x+5)$ for all real x. Show that $f (x+18) = f (x)$ for any real $x$.

2006 Pre-Preparation Course Examination, 1

a) Find the value of $\sum_{n=1}^{\infty}\frac{\phi(n)}{2^n-1}$; b) Show that $\sum_k {m\choose k}{{n+k}\choose m}=\sum_k {m\choose k} {n\choose k} 2^k$ for $m,n\geq 0$; c) Using the identity $(1-x)^{-\frac 12}(1-x)^{-\frac 12}=(1-x)^{-1}$ derive a combinatorial identity! d) Express the value of $\sum (2^{a_1}-1)\ldots (2^{a_k}-1)$ where the sum is over all $2^{n-1}$ ways of choosing $(a_1,a_2,\ldots,a_k)$ such that $a_1+a_2+\ldots +a_k=n$, as a function of some Fibonacci term.